enfermedad sistema nervioso

Enfermedad Sistema Nervioso: Tratamiento con impresion 3D

Enfermedad Sistema Nervioso: Descubren tratamientos usando impresión 3D

Enfermedad sistema nervioso: A partir de impresión 3D se ha realizado un holograma, técnica que al igual que la fotografía, produce una imagen en una película, el holograma se transmite de forma tridimensional, o multidimensional debido a que se pueden ir apreciando todas y cada una de sus partes dependiendo del movimiento que tengas, lo que te permite observarlo desde todos sus ángulos.

Ahora bien, es gracias a estos hologramas y a la impresión 3D que un equipo de la Universitat Politécnica de Valencia (UPV), el Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad de Columbia  (EE.UU) ha logrado mejorar el tratamiento para enfermedades del sistema nervioso tales como el alzhéimer, el párkinson, la esquizofrenia o la esclerosis múltiple.

¿Cuál es el proceso? 

 

Es así como el equipo a cargo puso a prueba el potencial de estos hologramas acústicos en 3D sobre un modelo animal, a fin de encontrar un nuevo método que ayude a contrarrestar y reducir notablemente los efectos generados por la manifestación de estas enfermedades.

En lo que respecta a su funcionamiento, este holograma acústico es colocado frente a un emisor de ultrasonidos en forma de altavoz y luego atravesado por una onda.

Esta nueva tecnología, desarrollada en ratones, facilita la administración de fármacos terapéuticos para el tratamiento de patologías que afectan al sistema nervioso central. Lo consigue al atravesar de forma precisa la barrera hematoencefálica, encargada de restringir el paso de sustancias tóxicas entre la sangre y el cerebro.

Un cono lleno de agua es puesto en contacto con el cráneo, sirviendo así como medio para permitir la propagación de la onda antes de impactar en el paciente.

La onda atraviesa el cráneo hasta desembocar en la zona cerebral seleccionada como objetivo. Mientras esto ocurre en el torrente sanguíneo son insertadas unas microburbujas que ejercen vibración al alcanzar los capilares del cerebro y coincidir con el ultrasonido.

Es en este punto donde se producen pequeñas grietas en el tejido epitelial de la barrera hematoencefálica, las cuales sirven como punto de acceso a las moléculas de los fármacos destinados al tratamiento del Alzheimer, Parkinson o cualquier otra enfermedad sistema nervioso.

El holograma impreso en 3D es personalizado en cada caso, creado a partir de un TAC y una resonancia magnética sobre la que se identifica y segmenta la zona de tratamiento. Se procede a diseñar el holograma. Actualmente estan diseñando los primeros protocolos para la experimentación con humanos con el objetivo de tratar tumores cerebrales y elaborar estudios de neuroestimulación cerebral.

 

Referencia:

S. Jiménez-Gambín, N. Jiménez, A. N. Pouliopoulos, J. M. Benlloch, E. E. Konofagou and F. Camarena, “Acoustic Holograms for Bilateral Blood-Brain Barrier Opening in a Mouse Model,” in IEEE Transactions on Biomedical Engineering, vol. 69, no. 4, pp. 1359-1368, April 2022, doi: 10.1109/TBME.2021.3115553.


trabajos en impresora 3d

Trabajos en impresora 3D: Conoce los beneficios de optarla en tu negocio

Trabajos en impresora 3D: Conoce los beneficios de optarla en los negocios 

Si aún dudas de invertir realizando trabajos en impresora 3D, en este blog te comentamos las razones para que optes por la manufactura aditiva en tu negocio. 

El sector de la impresión 3D está estimada en 12 trillones de dólares a nivel mundial, provocando que se libere un potencial económico muy pocas veces visto. Incluyendo la robótica, la inteligencia artificial, la realidad aumentada se forma un equipo que cada vez crece más y sobresale debido a las soluciones y beneficios que aporta. 

Incluso, expertos creen que para este 2022 el crecimiento general de la industria podría alcanzar el 23% interanual.

Ahora bien, si tienes la intención de incluir trabajos en impresora 3d en tu negocio te dejamos una guía básica de los puntos que debes tomar en cuenta. 

  1. Define un objetivo: Ten en claro cuál es el principal beneficio que pretendes obtener con la manufactura aditiva, por ejemplo ahorrar costos, tiempo o mejorar la eficiencia. 
  2. Elige la tecnología ideal: ahora que ya sabes cuál es tu objetivo principal investiga qué tipo de tecnología será la ideal para cumplir tus objetivos, existe tecnología de deposición de material fundido, con resina o bien polvo. Selecciona la que mayor se ajuste a tus necesidades 
  3. Consigue los artículos ideales:  finalmente selecciona los artículos necesarios que te brinden la calidad, la facilidad de uso o bien, que se adapte a tu presupuesto como los filamentos y resinas Colorplus. 

Beneficios que obtendrás los trabajos en impresora 3D en tu negocio 

  1. Reducción de costos 
  2. Eficiencia en los tiempos de entrega 
  3. Mejoras en el flujo de trabajo 
  4. Soluciones mejoradas 
  5. Gran variedad de materiales 
  6. Ahorrar tiempo 
  7. Facilidad de uso

En conclusión, incluir los trabajos en impresora 3D en tu empresa o negocio puede contribuir a reducir costos y a la par fabricar productos altamente personalizados, eliminando la total dependencia a una cadena de suministros, dependencia a la logistica global. ¡Lo mejor de todo es que los trabajos en impresora 3D pueden aplicarse a cualquier industria, solo hace falta imaginación y emprendimiento!


fertilidad masculina

Impresión 3D prueba de fertilidad masculina

Usan impresión 3D para medir la fertilidad del masculina

fertilidad masculina

En los últimos años los problemas de infertilidad han aumentado por distintos factores, algunos de estos factores van desde temas con la alimentación, inmunología, genética, trastornos hormonales y más.

Por esto, un equipo de investigadores del Brigham and Women’s Hospital de la Universidad de Harvard y del Massachusetts General Hospital, en Boston (EE.UU.), desarrollaron en 2017 un dispositivo de bajo coste y fácil de usar que, conectado a un smartphone, puede evaluar muestras de semen para pruebas de fertilidad masculina en casa en menos de cinco segundos y con una gran precisión.

Para los autores esta innovación podría ser de gran utilidad para más de 45 millones de parejas en todo el mundo afectadas por problemas de fertilidad.

“Se estima que la infertilidad masculina desempeña un papel en aproximadamente el 40% de los casos, lo que subraya la necesidad de un análisis de semen más rutinario y fiable”

A demás, buscan que las pruebas de fertilidad masculinas fueran de una forma más sencillas y asequibles como lo son las pruebas de embarazo.

“Hasta ahora, los hombres tenían que proporcionar muestras de semen en habitaciones de clínicas, una situación en la que a menudo experimentan estrés y vergüenza. Además, las pruebas de laboratorio tardan tiempo y sus resultados son a menudo subjetivos”.

Cómo funciona

Gracias al uso de la impresión 3D para el prototipado y avances en electrónica de consumo y microfabricación se abarataron costos de producción y prueba. Para que funcione, se necesita de un microchip desechable con una punta capilar y un bulbo de goma, se utilizan para el manejo de muestras de semen. El equipo ha diseñado además una app que guía al usuario en cada paso y una escala de peso miniaturizada que se conecta de forma inalámbrica al móvil para medir el recuento total de espermatozoides.

Para evaluar el dispositivo, los científicos estudiaron 350 especímenes clínicos de semen del Massachusetts General Hospital Fertility Center. El sistema fue capaz de detectar muestras anormales de semen –basadas en las medidas de la Organización Mundial de la Salud sobre concentración y motilidad de espermatozoides– con una precisión del 98%.

Gracias a esta innovación iniciada en 2017, hoy se encuentran a la venta diferentes dispositivos para medir el esperma como es el caso de YO. Este producto sigue el mismo concepto y puede ser visto desde tu teléfono celular. Tiene un 97% de efectividad y está a la venta por $50 dolares.

Para usarlo, se requiere de una aplicación para tu teléfono y una muestra. Su uso es muy fácil y te da tus resultados en muy poco tiempo.

Recomendaciones para mejorar la fertilidad masculina

Puede que te preguntes, si mi producción de espermas es buena o regular ¿Qué puedo hacer para mejorarlo? ¿Qué factores afectan más? Estas son algunas recomendaciones básicas que podrían ayudarte a mejorar la calidad de tu esperma. Pero ten en cuenta que para tener una mejor evolución es necesario atenderte con un doctor.

Evita el alcohol y el tabaco

La nicotina y el exceso de alcohol influyen en la calidad seminal. La nicotina puede producir roturas en el ADN de los espermatozoides y afecta al material genético. Por otro lado, una tasa elevada de alcohol interfiere en la producción de testosterona, que es la principal hormona masculina en la producción de los espermatozoides.

Controla el estrés y la ansiedad

El estado emocional y psicológico influye directamente en la estructura de las células reproductivas. Concretamente, puede provocar estrés oxidativo, que disminuye la producción de oxígeno celular en el semen. Este hecho condiciona gravemente la calidad seminal y la posibilidad de fecundar.

No utilices ropa ajustada

Las prendas ajustadas ejercen presión sobre la piel y, en el caso de los testículos, aumenta la temperatura de la bolsa escrotal. Este hecho deteriora la calidad seminal y limita la producción de espermatozoides.

Ten precaución con algunos deportes

No existe ningún deporte convencional cuya práctica provoque infertilidad, pero algunas disciplinas deportivas pueden influir de manera negativa. Por ejemplo, deportes como el ciclismo ponen en riesgo la temperatura de los testículos. Los baños calientes, los hidromasajes o el uso de mantas térmicas afectan de la misma forma, pudiendo alterar la producción y calidad de los espermatozoides.

Mantén una dieta equilibrada

Tener un peso saludable es muy importante para una buena calidad seminal. Está demostrado científicamente que los hombres con obesidad producen 9 millones de espermatozoides por mililitro menos respecto a los hombres con un peso normal.

Ojo con los contaminantes

Uno de los principales factores externos que afectan a la capacidad reproductiva masculina es la contaminación ambiental. Además, algunos componentes químicos que se encuentran en los productos de limpieza o en los alimentos ultraprocesados producen reprogramación celular. Este hecho, repercute gravemente en el estado de los espermatozoides.

Descansa el tiempo necesario

La falta de sueño y de tiempo en el descanso actúa en los niveles de testosterona, que afecta a la cantidad de espermatozoides y su supervivencia. Un estudio de la Universidad de Boston reveló cómo la falta de sueño reduce en un 42% la probabilidad de fecundar respecto a hombres que duermen las horas recomendadas.

YouTube video player

fertilidad masculina

fertilidad masculina


Impresión 3d joyeria

Resina para joyería

Impresión 3d joyeria

Impresión 3d joyeria

El sector de la joyería resulta en un arte. La creación de piezas de acabados únicos representa un trabajo arduo y complejo. Por eso, poco a poco los joyeros está implementando nuevas técnicas para mejorar sus procesos. Uno de ellos es el uso de la impresión 3D dentro de la joyería.

Para tener una mejor visión, se suelen crear prototipos de los diseños, pruebas y moldes para fundición con Resinas 3D. Esto acelera los procesos internos y mejora el producto, logrando acelerar la producción final.

Ventajas del uso de resina 3D para joyería

Personalización: con la ayuda de una impresora 3D podrás ofrecer a tu público objetos a medida, pensados exclusivamente para ellos, diseños exclusivos a un coste mínimo.

Simplicidad: las modificaciones en diseños se vuelven simples, y la creación de diferentes versiones es barata, rápida y sencilla.

Minimiza costes: al utilizar una impresora 3D reducimos costos en producción, a demás de realizar diseños complejos de forma rápida y económica.

Réplicas: reproduce piezas específicas de manera más fácil y simple a un menor precio.

Rapidez: acelera tus procesos de producción con la capacidad de imprimir por lotes.

Revestimiento, molde y fundido

Paso 1: Fija una caja de moldeo

Fija una caja de moldeo a la base de los bebederos. Si la caja tiene agujeros, envuélvela con cinta de embalaje transparente para contener el material de revestimiento.

Paso 2: Mezcla el revestimiento

Mezcla el revestimiento según las instrucciones del fabricante. Mézclalo a baja velocidad hasta que el polvo esté completamente húmedo.

Paso 3: Vierte el revestimiento

Vertido del revestimiento por el lado de la caja de moldeo, evitando el árbol del patrón. Realizar el vertido de forma fluida reduce la probabilidad de que queden atrapadas burbujas de aire. Usa una cámara de vacío para extraer las burbujas de la caja de moldeo. Permite que el revestimiento se endurezca y se seque.

Paso 4: Realiza la desgasificación

Desgasifica según las instrucciones del fabricante. Mantén el máximo vacío posible para evitar burbujas de aire en la fundición.

Impresión 3d joyeria

Paso 5: Deje que la caja se asiente durante 2-6 horas

Retira con delicadeza la base de goma de la caja y deja que repose en un entorno sin vibraciones durante 2–6 horas. Sigue las recomendaciones de seguridad del fabricante del revestimiento. Formlabs recomienda utilizar una máscara para el polvo o un respirador.

Fundición

Para el proceso de fundido de resina, se basa en revestir la o las piezas en un material refractario. Esto formará un molde de la pieza que permitirá fundir el metal para llenar la pieza. Gracias a que la resina se funde, el metal ocupara su lugar respetando los detalles en el revestimiento.

Joyas creadas con impresión 3D

 Anillos de  3Dwave Encode

La startup japonesa 3Dwave ha creado una línea de anillos y joyas impresas en 3D. Su colección creativa te permite enviar un archivo de audio de 3 segundos que convertirán en un precioso anillo fabricado con tecnologías 3D.  3Dwave ofrece estos anillos de metales estándar a metales preciosos como el oro y el platino.

Endswell y su joyería impresa en 3D

Rachel Gant y Andrew Deming, los diseñadores californianos detrás de Endswell Jewelry, empresa en la que se utiliza la impresión 3D para el desarrollo de originales anillos de oro macizo. Su trabajo se centra en piezas hermosas, pero con un diseño mínimo y sencillo, que ofrecen una alternativa a los anillos de bodas tradicionales.

Paola Valentini

La joyería impresa en 3D por la diseñadora italiana Paola Valentini. Su pulsera de oro rosa impresa en 3D de Valentini recibió el premio gracias a la utilización de técnicas de fabricación aditiva para crear las complejas estructuras de  la pieza de 64 gramos.

Skraep

Skraep es la empresa estadounidense responsable del lanzamiento de las originales joyas LuxMea, que convierten el papel arrugado en joyas impresas en 3D.  Lanzadas en 2015 a través de una campaña de Kickstarter, que a pesar de no alcanzar su meta, puso en alto el nombre del estudio de diseño responsable de piezas que van desde anillos, pulseras y collares todos relacionados con un diseño de papel arrugado, pero en metal.

Nervous System

Nervous System es un estudio de diseño estadounidense especializado en impresión 3D de complejos objetos. La técnica de la empresa es la utilización de modelos matemáticos para crear diseños de joyas, como pulseras y anillos. Además, Nervous System  también crea elementos de diseño para el hogar tales como jarrones, lámparas o esculturas. sus piezas van desde la impresión 3D hasta los materiales flexibles.

Zazzy

Zazzy es una startup holandesa que ofrece un catálogo de joyas para personalizar en línea. Una vez personalizado, puedes pedirlo y recibir la pieza impresa en 3D directamente en la puerta de tu hogar. La compañía ha ampliado los materiales que ofrece para incluir oro, acero y nylon.

Ciertamente el uso de la impresión 3D en los diferentes comercios e industrias a aportado muchos beneficios para los negocios y las reproducciones en masa. Ahora resulta más fácil conseguir piezas únicas e inimaginables.

Referencias para este blog


Impresión 3d joyeria

Impresión 3d joyeria

Impresión 3d joyeria


colmena 3d

Colmena impresa en 3D

Colmena 3D

Colmena 3D

Hablar de innovaciones con impresión 3D se ha convertido en un tema recurrente en este blog. En esta ocasión vamos a hablar de una invención directa para la apicultura. Se trata de Flow Hive Honey, un producto que permite recolectar la miel reduciendo el tiempo de trabajo del apicultor y que protege a las abejas.

Este proyecto fue creado por Cedar y Stuart Anderson. Cedar pensó que debía haber una manera más fácil de extraer miel directamente de la colmena que fuera menos estresante para las abejas. Fue así que junto con su padre Stuart idearon el concepto de Flow Hive.

Flow Hive es un marco de plástico que se encuentra dentro de una colmena convencional. Con un tirón de la palanca, la miel simplemente se drena en un frasco.

Todo inició en un cobertizo de Australia y actualmente han vendido 75,000 colmenas de flujo en uso en más de 130 países.

Aparte de pasar todo el fin de semana creando un desastre pegajoso en el cobertizo, no me gustaba aplastar abejas ni molestar a la colmena para cosechar, así que pensé que “tiene que haber una mejor manera”.

¿Entonces, cómo funciona?

Estas colmenas constan de 8 a 10 marcos estándar según el modelo. Esta estructurada para que exista una recolección limpia de miel. En el interior de los marcos, se encuentra una estructura impresa en 3d, similar a la de un panal preformado. Esta estructura se mueve con herramientas para que deje fluir la miel a través de un tubo.

Una vez que las celdas están llenas se puede retirar la miel con las herramientas.

Retire la tapa de la herramienta y la tapa del tubo

Inserte el tubo en el orificio
Inserte la herramienta en la ranura inferior
Girar la herramienta 90° hacia abajo

Los paneles se desplazan haciendo que la miel baje

La miel sale limpia, sin cera y sin lastimar a las abejas

¿Qué sucede con las abejas?

Una de las granes preguntas es qué sucede con las abejas en todo el proceso. Estas se mantienen dentro de los marcos, pero nada que preocuparse. Gracias a su estructura las abejas pueden mantenerse dentro sin ningún problema.

El diseño esta pensado en la protección de las abejas lo más seguro posible para ellas. A demás, sus productos son lo más sustentables posibles, desde la construcción de los panales hasta los productos de uso para su cuidado.

¿Qué pasa con el mundo y este nuevo producto?

Existen diferentes opiniones con respecto a este producto. Están las personas que apoyan esta invención como sus detractores, argumentando que afecta directamente el ecosistema y que las convierte en una granja más.

También existe el debate sobre la estructura. En 1940, el español Juan Bizcarro Garriga patentó un sistema muy similar. La diferencia, al parecer, radica en el material utilizado. El invento de Juan Bizcarro era de metal, mientras que para Flow Hive Honey se utiliza el plastico impreso.

A pesar de las controversias que existen en el publico, en especial entre apicultores, no se puede negar que es parte de una gran innovación. Si este producto interactua de forma amable con las abejas y reduce los tiempos de producción, puede ser considerado como un invento revolucionario para su área.

¡Qué esperas para obtener tu propia colmena!

YouTube video player

Referencias para este blog


colmena 3d

colmena 3d


Collar anti covid

Collar Anti Covid creado por la NASA

Collar anti covid Creado por la NASA

Collar anti covid

El mundo se estremeció en 2020 con el anuncio de un nuevo virus proveniente de Wuhan, China que se esparció al rededor del mundo provocando una de las pandemias más grandes en la historia. Dos años después del descubrimiento del coronavirus, el mundo parece estar más cerca del fin de la pandemia.

Pero, ¿qué es lo que nos garantiza este 2022? ¿existe algún tipo de protección a demás de las vacunas? ¿que puedo hacer para evitar los contagios?

Algunas de estas preguntas se han tornado en retos para mejorar la estadía y prevenir los contagios, como en el caso de la NASA y el collar que ayuda a prevenir contagios por coronavirus.

A demás de las recomendaciones del sector salud (distancia social, el uso correcto de mascarillas y el lavado correcto de manos), una de las causas principales del contagio sigue siento el contacto directo con las vías respiratorias, siendo el primer contacto en la cara.

A pesar de que el uso de las mascarillas a ayudado a prevenir el contagio, el tocar constantemente la cara con nuestras manos afecta considerablemente. Se estima que una persona promedio se toca la cara al rededor de 23 veces por hora.

Gracias a este factor, un grupo de ingenieros de la NASA crearon un dispositivo que busca reducir el contacto. Este artefacto conocido como PULSE es un collar con un sensor que emite una vibración al detectar que la persona se lleva sus manos al rostro.

Este tipo de acciones, tics o hábitos pasan desapercibidos gracias a la frecuencia con la que se hacen. Es una rutina más de nuestro día a día. Con PULSE, se espera disminuir estas frecuencias y así disminuir en contagio, no solo del covid-19, sino de otras enfermedades respiratorias.

Qué es PULSE

Como acabamos de mencionar, PULSE es un collar inteligente creado con impresión 3D que posee un mecanismo de vibración para notificar al usuario cuando intenta llevar la mano al rostro.

Este dispositivo está equipado con un sensor de proximidad que, al estar colgado desde el cuello, detecta cuando la persona acerca la mano a su rostro. También esta construido con componentes de fácil acceso, permitiendo su creación en casa.

Cómo consegirlo

Los creadores de PULSE pusieron el proyecto de forma online como código abierto, de forma tal que cualquier persona con los conocimientos técnicos necesarios puede crear su propio collar tecnológico para evitar tocarse la cara. Puedes entrar al link para descargar los archivos y ver el proceso en inglés.

Nosotros compartimos el proceso en español.

Collar anti covid

Materiales para collar anti covid

Impresora 3D FDM con filamento 3D
Te recomendamos filamento PLA COLOR PLUS 
Soldador y soldadura
Pelacables
Soporte de manos auxiliares para ayudar a soldar (opcional)
Unidad de sensor IR
Transistor PNP: 2N3906 o equivalente
Resistencia estándar de 1 K Ohm
Interruptor deslizable
Motor vibratorio
W1 – 5 cm; W2 – 4 cm; W3 – 2 cm; W4 – 2 cm; Alambre calibre 22
Tubo termorretráctil para cubrir cables
Portapilas
Batería tipo botón CR2032 de 3 V
Pintura de color oscuro

Diagrama del Circuito

El elemento central del diseño del colgante PULSE es la unidad de sensor de infrarrojos (U1 en el diagrama) que proporciona una señal de salida alta (~3 V) al pin 3 de forma predeterminada. Y una señal de salida baja (~1 V) cuando el detector LED (D1) recibe una señal que indica que su mano (u otro objeto reflectante) está frente al colgante. L1 es el LED infrarrojo radiante. Cuando el pin 3 baja, alimenta el transistor PNP (Q1) para energizar el motor (M1) haciendo que vibre y el colgante emita pulsos. V1 es la batería de 3 V en la caja y S1 es el interruptor deslizante. El pin 4 del sensor de infrarrojos es una entrada de habilitación y no se utiliza.

1.- Conecte las soldaduras W1 a la clavija central del interruptor y las soldaduras W2 a una clavija del extremo del interruptor. El tercer pin del interruptor se puede cortar; no se usa. El termorretráctil cubre los pines.

2.- El otro extremo de W2 se suelda al pin emisor del transistor, así como al cable W3. (Esta es una conexión de tres vías: los cables W2, W3 y el pin del emisor del transistor están conectados entre sí; este es el voltaje positivo). El termorretráctil se utiliza para cubrir el conductor en el transistor.

3.- El otro extremo del cable W3 luego se conecta al pin 2 del sensor IR.

4.- Cable W4 (tierra), se conecta al pin 1 del sensor IR.

5.- La resistencia estándar de 1 K Ohm se conecta al pin medio o base del transistor. Use termorretráctil para cubrir la conexión.

6.- La resistencia estándar de 1 K Ohm se conecta al pin 3 del sensor IR.

7.- El cable rojo del motor vibratorio se suelda al pin colector del transistor. Use termorretráctil para cubrir la conexión

8.- El cable negro del motor vibratorio se suelda al puerto de tierra de la caja de la batería (junto con W4). El otro extremo de W1 se suelda al pin positivo del portapilas. Esta imagen muestra el ensamblaje completo y los cables plegados para insertarlos en la carcasa inferior.

9.- El motor y el interruptor encajan en la base de la caja.

10.- El sensor IR se desliza en los rieles de la base de la caja.

11.- Los componentes electrónicos se colocan suavemente en la base de la carcasa.

12.- Usando una pintura de color oscuro (es decir, acrílico, aceite, esmalte de uñas, etc.) como negro, azul marino, verde oscuro, etc., pinte ligeramente sobre el emisor como se muestra en la imagen a continuación. Usar un bolígrafo o marcador de color oscuro no funcionará igual que la pintura.

YouTube video player

Con la electrónica en la base de la caja, se puede instalar la batería, se puede encender el interruptor; ¡Mueva su mano frente al sensor IR y el LED rojo en la placa del sensor se encenderá y la caja PULSARÁ!

Instale la carcasa superior. Adjunte un collar de su elección y PULSE está completo

Mientras persista la pandemia, vale la pena evitar las multitudes siempre que sea posible, usar mascarillas de buena calidad al salir de casa y priorizar las reuniones al aire libre, además de, por supuesto, recibir las dos o tres dosis de vacuna dentro de los plazos estipulados.

Collar anti covid

YouTube video player

Referencias para este blog


Collar anti covid


impresion 3d y medicina

la impresion 3d y como ayuda a los tratamiento de cáncer de piel

Impresión 3D y Medicina para el Cáncer de Piel

impresion 3d y medicina

Optimizar el tratamiento del cáncer es uno de los objetivos principales en oncología. La impresión 3D es utilizada para tratar el cáncer de piel con tumores pequeños. Gracias a esta nueva implementación, se planea trabajar de forma más rápida, eficiente y económica en el tratamiento de cáncer de piel.

Por esto, un grupo de investigadores de Universidad Rovira i Virgili (URV), en Tarragona, del Instituto de Investigación Sanitaria Pere Virgili (IISPV) y del Hospital Sant Joan de Reus han ideado mediante una impresora 3D una máscara que protege la piel sana de la radiación que se aplica en los tratamientos para el cáncer de piel. Ellos ocuparon el material PLA para elaborar el dispositivo protector.

Mediante esta nueva técnica, basta con realizar un escáner de pocos segundos de duración en el área corporal afectada. Acto seguido se introducen los datos en la impresora 3D y se espera a que la máquina haga su trabajo, mientras el paciente realiza sus actividades cotidianas con total normalidad.

En concreto, los científicos se han centrado en la zona nasal porque es la más irregular, aunque los resultados son aplicables a cualquier otra parte del cuerpo. Con la ayuda del escáner y la impresora 3D, los médicos podrán disponer de una pieza personalizada que permitirá proteger la piel sana que rodea el tumor que debe recibir radiación.

Para tratar un cáncer de piel suelen utilizarse dos tipos de tratamiento alternativos: cirugía o radioterapia. Una de las técnicas radioterapéuticas más frecuentes es la braquioterapia, que consiste en colocar material radioactivo directamente sobre la piel. Sin embargo, este material no distingue células ‘buenas’ de células ‘malas’, por lo que resulta imprescindible proteger las zona sanas para que no resulte dañada.

Para administrar el tratamiento, se fabrica manualmente una máscara que, al mismo tiempo, permite proteger la piel que no debe recibir radiación. Previamente, se elabora un molde del rostro con alginato. (Elaborado a partir de algas pardas y tiene propiedades gelificantes).

Para ello, se coloca en la cara del paciente un plástico sobre el que se pone el alginato para que tome la forma de la zona. Pasadas 24 horas, este molde en negativo se seca y se utiliza para crear, mediante varias capas de cera, la máscara que llevará el enfermo durante la radiación. Este procedimiento que resulta “ciertamente muy incómodo”, a demás de ser “proceso largo y laborioso, que implica que el paciente tenga que ir más de una vez al hospital”.

impresion 3d y medicina

El procedimiento para elaborar la nueva máscara es muy distinto, ya que es mecánico: se escanea la cara del paciente para digitalizar la forma del rostro y, con la ayuda de un programa informático especializado, se diseña la máscara, que se envía a una impresora 3D, que la termina en siete horas. Esta técnica innovadora proporciona una solución más cómoda para el paciente, que únicamente debe permanecer quieto unos segundos, mientras el escáner manual pasa por delante de su cara, sin que sea necesaria una actuación directa en la piel, como si tuviera que hacerse una radiografía.

Esta impresión resulta ser mucho más rápida y económica, ya que no necesita de un material previo para el hacer un molde. De igual forma, se obtiene un ahorro en material ya que se puede realizar la impresión de zonas en especifico para el tratamiento.  Además, de esta forma se obtienen resultados más precisos y sin tener a los pacientes por mucho tiempo. impresion 3d y medicina

Referencias para este blog



reconstruccion 3d

El profesor que quiere reconstruir un museo con impresión 3d

El profesor que quiere reconstruir un museo con impresión 3D

reconstruccion 3d

Impresionante Incendio en el Museo Nacional de Brasil en Río que deja cerca del 90% de la exhibición perdida ante las llamas en 2018.  Este evento es considerado como una catástrofe para la historia y la cultura del país y el continente americano.

Este museo albergaba cerca de 200 años de antigüedad, guardando piezas como el meteorito de Bendegó, huesos de dinosaurios y momias egipcias por mencionar algunas de las tantas piezas que se almacenaban en su interior.

Se estima que los bomberos tardaron cuatro horas en controlar las llamas.

A pesar de esta gran perdida, existe una posibilidad de reconstrucción a través de la impresión 3D. No hablamos de la fachada del museo, que afortunadamente no sufrió grandes lesiones, sino de las piezas exhibidas.

Jorge Lopes, investigador brasileño especialista en diseño e impresiones 3D, estuvo a cargo de este proyecto. Desde hace más de 15 años, el profesor del Instituto Nacional de Tecnología (INT) y la Pontificia Universidad Católica (PUC) trabaja junto a un grupo de científicos del Museo Nacional de Río de Janeiro en la construcción de un archivo digital y de réplicas tridimensionales de algunas de las piezas más emblemáticas de la colección presentada en el Museo Nacional.

reconstruccion 3d

reconstruccion 3d

Su labor siempre estuvo destinada a brindar apoyo a geólogos, paleontólogos, antropólogos y otros profesionales para diversos análisis científicos, mas la tragedia le dio un giro significativo su profesión.

La decisión de comenzar a crear copias para cuando el museo vuelva a levantarse quedará en manos de las autoridades de éste. Según dijo Lopes, con el material almacenado digitalmente -parte del archivo también se perdió en el incendio- podrían hacerse “muy buenas replicas, con los mismos colores, superficies y estructuras” de varias piezas originales.

reconstruccion 3d

Obras como el cráneo de Luzia, la urna de Marajoara, colecciones grecorromanas y varias piezas de paleontología se encuentran digitalmente guardas en los archivos digitales.

El uso de dichos archivos podrá ser aprovechado más allá de la generación de réplicas de obras destinadas a una nueva exhibición. Según explicó Lopes, en caso de que sean encontrados fragmentos o piezas de originales debajo de los escombros, la construcción de réplicas podría ser de vital ayuda para asistir en la reconstrucción de ejemplares originales.

reconstruccion 3d

Gracias a esta propuesta, cerca del 35% de las obras que se encontraban podrán ser restauradas con el paso del tiempo. Se encontró que el 19% de las obras sobrevivieron a la tragedia gracias a la ubicación que tenían dentro del inmueble y se espera que para el 2022 se pueda inaugurar nuevamente el museo reconstruido.

Referencias para este Blog:



Corales impresos en 3D

Reconstrucción de corales impresos en 3D

Corales impresos en 3D

Corales impresos en 3D

Los arrecifes de Coral son organismos coloniales que proporcionan protección a distintos animales y micro algas, y a cambio obtienen la energía que produce la zooxantela a través de la fotosíntesis.

Los corales se encuentran al rededor de mundo, y  pesar de que ocupan menos del uno por ciento de la superficie oceánica, son refugio y proveedores de alimento para casi el 25 por ciento de las criaturas marinas existentes.

Una de las características de los pólipos (por los que se conforman los corales) es la falta de movimiento. Gracias a esto, los corales no pueden desplazarse ni cambiar de zona si se quedan sin nutrientes en el área.

Por ese motivo, en vez de buscar recursos, el coral necesita la presencia de otro organismo para sobrevivir: las zooxantelas. Este tipo de alga microscópica vive dentro del sistema digestivo de los pólipos y son precisamente los que dan esos colores vivos al coral.

Los pólipos son muy sensibles a cambios de temperatura y salinidad. Si estas condiciones cambian, acaban expulsando a las algas y pierden su principal fuente de alimento. También en caso de que el agua se contamine y enturbie, la luz solar no llega bien a las zooxantelas, que acaban secretando menos alimento y provoca que el coral muera de inanición.

Cuando esto sucede los efectos se ven a simple vista. Los corales pierden sus vivos colores y se quedan blanquecinos. A este proceso se le llama blanqueamiento del coral, y es una medida muy usada para determinar la salud del coral y conocer el estado de las aguas.

Lamentablemente, la Gran Barrera de Coral está viéndose amenazada desde hace años, azotada como nunca se había visto antes no solo por el cambio climático y sus consecuencias. También gracias a la intervención humana, la población de corales ha disminuido en una gran cantidad. Se calcula que un 10% de los corales del lecho marino están ya muertos y un 60% está en riesgo de sufrir el mismo destino.

Para frenar este deterioro, se han buscado implementar soluciones como la purificación de las aguas o la restricción al acceso a los corales. Lamentablemente, estas técnicas son tardadas y tomarían años para poder ver un resultado significativo por las variantes en el ambiente.

Gracias a esto, diferentes propuestas han surgido y es donde la impresión 3D toma la batuta. Se han hecho varias propuestas para poder regenerar los ecosistemas y regeneración de los corales por medio de la fabricación aditiva de una manera sorprendente.

Coral impreso en 3D

Uno de estos proyectos para reconstrucción fue dirigido por Danielle Dixson de la Universidad de Delaware (UD) y Emily Ruhl, ex alumna de la UD.

Este proyecto tenía como objetivo el encontrar una manera de mantener a los animales adecuados presentes en un arrecife después de experimentar una crisis. Para esto, se buscaron diferentes materiales que no dañaran el coral restante y que no afectaran negativamente el comportamiento de los peces.

Para los experimentos de laboratorio, los investigadores hicieron cuatro modelos de coral impresos en 3D hechos de diferentes materiales. Colocaron los modelos en un tanque con un esqueleto de coral nativo. Los investigadores colocaron damiselas en el tanque y observaron si los peces preferían un tipo de coral más que los demás.

Para sorpresa de los investigadores, los peces no mostraron preferencia entre el esqueleto de coral impreso y el coral nativo. Manteniendo así el nivel de actividad a pesar del habitad.

“Pensé que el esqueleto natural provocaría un comportamiento más dócil (es decir, de aceptación) en comparación con los objetos impresos en 3D. Pero luego nos dimos cuenta de que a los pequeños peces de arrecife no les importaba si el hábitat era artificial o carbonato de calcio, solo querían protección”.

Esto representa buenas noticias para futuras reconstrucciones, permitiendo el uso de materiales biodegradables. Ejemplos de esto es el almidón de maíz. Aunque aun existen riesgos al introducir plásticos en el mar, el uso de materiales biodegradables y ecológicos permitirá que el coral vivo ocupe su lugar a medida que se fortalece.

Paneles de terracota impresos en 3D para ayudar a regenerar los arrecifes de coral

Otra iniciativa también es implementada en Hong Kong. Investigadores de la Universidad de Hong Kong (HKU) y del Instituto de Ciencias Marinas de Swire (SWIMS) usan estructuras de arcilla impresas en 3D para ayudar a recuperar los corales que se encuentran en las aguas de Hong Kong.

El proyecto, denominado “reformative coral habitats”, tiene como objetivo instalar paneles de terracota impresos en 3D de 65 cm de diámetro y un peso aproximado de 20 kg que ayudarán a los corales a vivir y crecer.

Los paneles se probaron a principios de la primavera de 2018 en un entorno simulado donde han estado creciendo. Desde el éxito de la prueba, el equipo ha impreso 128 paneles de arcilla más que se desplegaron el mes pasado. Los investigadores vigilarán el crecimiento de los corales en los próximos años y proyectan que al menos restaurarán un área de 40 metros cuadrados de hábitat de corales.

YouTube video player

Referencias para este blog



Diccionario 3D

Diccionario 3D

Diccionario 3D

Diccionario 3D

Es común que para todas las personas que están iniciando en el mundo de la impresión 3D les resulte un poco difícil enteder todos los diferentes términos que se usan.

Es por ello que en esta ocasión traemos un breve diccionario 3D para que conozcas los diferentes términos que puedes encontrar dentro del mundo de la impresión 3D.

Abs Material Es un plástico que se utiliza habitualmente como material en la impresión 3D debido a que funde a una temperatura relativamente sencilla de alcanzar (240ºC), es soluble en acetona (lo que facilita enormemente la limpieza de las herramientas) y tiene unas muy buenas características técnicas ( principalmente es duro y rígido). Como puntos negativos podemos decir que no es biodegradable y es muy sensible  al deterioro por la exposición a los rayos UV.
Artifact Un objeto o forma impresa en la mesa de trabajo junto al objeto real. Se utiliza como un artefacto de transición y de limpieza cuando se utiliza una impresora 3D extrusora de doble cabeza o Dual PRO, con el fin de limpiar la boquilla entre los cambios de incandescencia.
Asa Material El filamento ASA es un termoplástico formado por acrilato, estireno y acrilonitrilo usado en impresión 3D que tiene unas propiedades similares a las del filamento ABS. Filamentos Especiales Premium
Base de impresión Parte de impresora Superficie lisa y nivelada que se utiliza como punto de inicio para las impresiones, depositando la primera capa de filamento sobre ella.
Boquilla Parte de impresora Punta de metal por la que sale el metal derretido, el diámetro del agujero que la recorre delimita el grosor del hilo de filamento que se deposita.
Brim Pieza Son unas pocas capas de filamento, impreso a cierta distancia de la pieza a imprimir para asegurarse de que el flujo de filamento este funcionando correctamente. Técnica utilizada para evitar el warping.
BuildTak Parte de impresora Lámina de plástico que se puede conectar a la superficie de impresión para mejorar sus capacidades de fricción. Las piezas impresas se adhieren a ella firmemente y son fáciles de eliminar después.
Cama caliente Parte de impresora Es una superficie que se puede incorporar a la base de impresión y se caracteriza por permitir que calentemos la base a la temperatura que consideremos oportuna, generalmente entorno a los 80ºC. Esta técnica permite minimizar los problemas de warping al reducir la diferencia de temperatura entre el material ya depositado y el material que sale por la boquilla.
CNC Proceso Es la abreviatura de Control Numérico Computarizado, que es un proceso de máquina automatizada basada en una serie de comandos codificados, por lo general, en un archivo de código G. El proceso no requiere un control manual o fuerza para operar pero la supervisión de un profesional puede ser necesaria para alcanzar el éxito.
Codificadores En la impresión 3D, son un dispositivo que obtiene información sobre los ejes de transmisión y la convierte en un dato que puede ser analizado para comprobar si el cabezal se encuentra en una posición correcta tomando como referencia a la superficie de trabajo.
Código G Es un lenguaje de programación normalizado que se utiliza para el control de máquinas-herramientas automatizadas. La máquina se mueve de acuerdo con estas instrucciones a través de una trayectoria. Este código es básicamente el lenguaje que entiende una impresora 3D.
Comunidad maker Nombre con el que se denomina al espacio que comparten los usuarios del entorno de la creación 3D, el open source, el harware libre, DIY y en general todo trabajo que se haga con espíritu colaborativo y animando a que el resto haga sus propias adaptaciones.
Correa Parte de impresora Generalmente de caucho, se utiliza para transferir los giros de los motores (mediante poleas) a los ejes y piezas móviles.
Cura Software Software que se encargan de convertir los ficheros STL al formato GCODE que utiliza la electrónica de la impresora. Pese a que la mayoría de impresoras pueden trabajar de manera autónoma también pueden ser controladas paso a paso por este programa.
DXF Formato Creado por Autodesk, este formato de archivo universal de datos CAD es uno de los más utilizados en el diseño, la ingeniería y el desarrollo de productos. Los archivos DXF se pueden importar en el software CAM, como Voxelizer, y posteriormente transformarse en códigos G.
Extrusor Parte de impresora Es el componente de las impresoras FDM que se encarga de tirar del filamento para hacerlo avanzar hacia el HOTEND. Se compone de engranajes y un motor de pasos que regula la velocidad con la que el filamento se desplaza. Diccionario 3D
Fab Lab Es un taller o laboratorio que ofrece varias herramientas para la fabricación digital. Fab Lab y sus usuarios pueden ser una gran fuente de conocimiento e inspiración para los principiantes de impresión en 3D, estudiantes y aficionados al bricolaje. Diccionario 3D
Fabricación aditiva Proceso Se refiere a diferentes procesos de fabricación utilizados para fabricar objetos en 3D mediante la adición de capas de material. Básicamente es un sinónimo de impresión en 3D. Diccionario 3D
Fabricación Digital Proceso Es el nombre para todo el proceso de diseño y fabricación de un objeto 3D con varios métodos CAD / CAM y de fabricación, como la impresión 3D, fresado CNC o el corte por láser. Diccionario 3D
Fabricación personal Proceso Proceso de fabricación en el que una persona es capaz de fabricar un objeto o un prototipo de trabajo de un archivo digital utilizando una sola máquina, incluso cuando se requieren diferentes métodos de fabricación. Diccionario 3D
Fabricación sustractiva Proceso También conocido como mecanizado. Se refiere a diversos métodos de fabricación en el que se corta parte de un material, molidos o grabado con el fin de crear una forma final o un objeto deseado. Diccionario 3D
FDM Técnica de impresión modelado por deposición fundida se refiere a un proceso en el que se deposita un material calentado (termoplástico) en capas o uno junto al otro hasta su fusión. Diccionario 3D
FFF Técnica de impresión Fabricación por fundición de filamento. El término se refiere al mismo proceso que FDM y fue acuñado por la comunidad RepRap. Diccionario 3D
Fibra de Carbono Material Es un material increíblemente resistente, durable,  tiene una alta resistencia térmica y química con una gran estabilidad de procesamiento y buenas propiedades reológicas. Tiene una excelente resistencia al impacto con bajas temperaturas así como una baja expansión térmica. Diccionario 3D
Fibra de Vidrio Material Es un material de Nylon reforzado con Fibra de Vidrio que proporciona un mejor rendimiento mecánico, resistente a la abrasión y resistencia al calor de hasta 120 ℃ sin dejar de tener un rendimiento de impresión excelente y suave. Diccionario 3D
Filamento Consumible Es el material de plástico que utilizan las impresoras FDM para poder crear objetos en tres dimensiones, Puede variar en tipo, consistencia, color o propiedades. Diccionario 3D
Gcode Es un fichero que contiene la información de cómo se debe cortar nuestros diseños  en capas imprimibles del grosor que deseemos ( y nuestra impresora sea capaz de hacer). Diccionario 3D
Híbrido / impresora multiusos 3D Término acuñado para distinguir las máquinas polivalentes de impresoras 3D regulares. Las máquinas híbridas suelen ser capaces de realizar impresión 3D y fresadora CNC, mientras que los dispositivos multiherramienta  pueden lograr impresión 3D, fresadora CNC, láser graba y extruir pastas espesas. Diccionario 3D
Hips Mateiral El Poliestireno de Alto Impacto o HIPS es una de las variedades existentes dentro de los poliestirenos. Dado que el poliestireno es un polímero muy frágil a temperatura ambiente, se modifica mediante la adición de polibutadieno para mejorar su resistencia al impacto. Diccionario 3D
Homing Se refiere a poner el extrusor -el cabezal- en una posición inicial predefinida Diccionario 3D
Hotend o fusor Parte de impresora Es la parte que calienta el filamento hasta su su punto de fusión. Habitualmente entre 200ºC y 300ºC. Diccionario 3D
Impresora 3D de escritorio Impresora 3D Se trata básicamente de una impresora 3D que cabe en un escritorio y tiene la capacidad de fabricación de componentes en casa, en un garaje o en la oficina. Gracias a la comunidad RepRap se han hecho más populares y asequibles en los últimos 6-7 años, con diversas empresas como ZMorph, Zortrax, MakerBot y Ultimaker ofreciendo sus propias máquinas, fáciles de usar para el consumidor. Diccionario 3D
Impresora cartesiana Impresora 3D Son aquellas impresoras que se basan los desplazamientos del cabezal y de la base de impresión en los ejes cartesianos (x-y-z). Diccionario 3D
Impresora delta Impresora 3D Son aquellas impresoras que mantienen la base de impresión fija y desplazan el cabezal mediante un sistema de 3 brazos. Estos brazos se mueven verticalmente por los soportes en los que están montados permitiendo situar el cabezal de impresión en la posición x-y-z necesaria en cada momento. Diccionario 3D
Kapton cinta Es una cinta adhesiva resistente al calor que puede ser utilizada para pegar objetos a la mesa de trabajo durante la impresión 3D. Diccionario 3D
Malla Colección de vértices, aristas y superficies que definen la forma de un objeto en el modelado de sólidos y gráficos por ordenador en 3D. Las superficies generalmente se representan con triángulos, cuadriláteros y otros polígonos simples. Diccionario 3D
Motor de paso Parte de impresora Es un tipo de motor de poca potencia que se caracteriza por poder hacer giros de pocos grados con pausas entre los mismos. Así tenemos un control total de las piezas desplazadas por ellos. Diccionario 3D
Outline Pieza Es una capa exterior en los bordes del modelo. Los modelos pueden ser impresos solo en contornos sin relleno interno también. El número de contornos se puede ajustar con casi cualquier software. Diccionario 3D
Pet-G Material El PETG es el copolímero más famoso y utilizado en el mundo de la impresión 3D. Su aparición es debida a la combinación el PET con glicol, mejorando las interesantes propiedades del PET con un proceso de glicolizado. Diccionario 3D
Pla Material Plástico utilizado para la impresión FDM biodegradable (ya que está compuesto con derivados del maíz). Por contra, presenta menos rigidez que el plástico ABS. Diccionario 3D
PVA Material PVA es una abreviatura de alcohol polivinílico, un material soluble en agua. A menudo se utiliza con impresoras 3D FDM de extrusión múltiple como material de soporte. Diccionario 3D
Prototipado rápido Proceso Proceso de preparación de archivos CAD e impresión 3D, de un prototipo, de una parte o de todo el objeto. Otros métodos de fabricación digital se pueden utilizar en el proceso también. Diccionario 3D
Ramps Generalmente se denomina así al conjunto de electrónica necesaria para el control de todos los procesos que realiza la impresora 3D. Diccionario 3D
Relleno Pieza Es la parte sólida interior dentro del objeto 3D. Hay una gran cantidad de cambios que se podrían ajustar aquí. El relleno se puede hacer con el mismo material o con uno diferente si se monta el extrusor de doble material. Diccionario 3D
SL Técnica de impresión También llamado estereolitografía. Es un proceso de fabricación aditiva basada en el funcionamiento de un láser UV y objetos de corte en una resina foto-reactiva. Se utiliza sobre todo en las impresoras 3D más grandes, las industriales. Diccionario 3D
Sla Técnica de impresión Técnica de impresión que consiste en la solidificación de una resina fotosensible mediante patrones de luz con los que se iluminan las diferentes capas de material que formarán nuestro objeto. Diccionario 3D
Slicer Software Nombre común para un programa de ordenador utilizado para la preparación de modelos para la impresión 3D. Programas como Voxelizer cortan los modelos en capas horizontales que están impresas en 3D. Diccionario 3D
SLS Técnica de impresión Sinterización Selectiva por Láser. Es un proceso de fabricación de aditivos que utiliza un láser para capas de sinterización de polvo. Se utiliza sobre todo en las impresoras 3D más grandes e industriales. Diccionario 3D
Soporte Pieza Estructura para objetos a imprimir con un gran voladizo o ángulo, de modo que se puedan imprimir correctamente. Puede ser eliminado por medios mecánicos o se disuelve después de la impresión. Diccionario 3D
STL Formato Es el formato de fichero estándar en el mundo de la impresión 3D, nos permite traspasar nuestros diseños de un programa a otro o almacenar nuestros diseños para un futuro uso.  Los archivos STL incluyen la geometría pura de modelos en 3D sin un color o textura. Pueden ser posteriormente transformados en códigos G en el corte de software. Diccionario 3D
Thermistor Parte de impresora Es la parte interior del bloque de metal justo por encima de la boquilla. Sirve como un mecanismo de retroalimentación de temperatura. Diccionario 3D
Voxel Unidad de medida en el modelado 3D. Cada objeto está representado por un Voxel, un píxel tridimensional en el espacio. El tamaño del voxel se puede ajustar. Diccionario 3D

¡Dejanos en los comentarios otros términos que conoces o utilizas y que no aparecieron aquí para seguir complementando el conocimiento de toda la comunidad en nuestro Diccionario 3D!

Referencias para este blog


Diccionario 3D : https://www.colorplus3d.com/diccionario-3d/


Tecnología espacial

Impresora 3D que funciona con rocas lunares

Tecnología espacial y la Impresora 3D que funciona con rocas lunares

tecnología espacial

¡La impresión 3D llega hasta la luna! Para muchos puede sonar loco, pero se esta volviendo una realidad. Gracias a diferentes proyectos realizados en los últimos años, hoy puede ser una gran oportunidad el que se logre imprimir 3D a base de ROCAS LUNARES.

Puede que te preguntes, ¿por qué se imprimiría en el espacio? Incluso, ¿qué tienen que ver las rocas lunares? En este blog te contaremos más sobre esta novedad de tecnología.

Si eres un seguidor y aficionado del espacio, probablemente conozcas de la misión Artemis, una misión de la NASA que consta de 7 etapas. En caso de no conocerla, la NASA tiene como objetivo enviar astronautas a la luna en un programa de exploración lunar. Estas misiones servirán para establecer una presencia sostenible en la luna y poder dar un paso a las expediciones a Marte.

¿Qué pasa con la impresora 3D?

Desde hace tiempo diferentes agencias espaciales han buscado una forma de darle un uso al polvo lunar. Por lo que una solución fue crear una impresora 3D capaz de digerir y moldear este polvo. Esta impresora 3D pesa menos de 3 kilos y puede derretir materiales lunares con un láser con el fin de utilizarlo como materia prima.

El experimento, desarrollado en asociación con el Centro Marshall de Vuelos Espaciales de la NASA, utilizará la Instalación de Fabricación Aditiva operada comercialmente por Redwire en la estación espacial. Es la primera vez que se utiliza material diseñado para imitar el suelo lunar para la impresión 3D en el espacio.

Con esta impresora, se espera crear herramientas en el espacio, ahorrando en recursos, ya que los cohetes que transportan a los astronautas al espacio deben llevar solo lo necesario. Lo que hace más conveniente que el equipaje de las herramientas se vea reducido a una impresora 3D en la cual puedan fabricar herramientas por ellos mismos.

Se espera que esta impresora sea de gran utilidad para las próximas misiones salientes de la misión Artemis. Si todo sale bien, podremos ver más de estas impresoras a lo largo de la Luna y hasta en Marte. Sin duda se ha demostrado que las impresoras 3D son una gran herramienta que sobrepasará su uso en el planeta.

Referencias para este blog:


Ingrassia, V. (2021, 22 agosto). La NASA estudia con impresoras 3D las técnicas para construir en la Luna. infobae. Recuperado 24 de noviembre de 2021, de https://www.infobae.com/america/tendencias-america/2021/08/22/la-nasa-estudia-con-impresoras-3d-las-tecnicas-para-construir-en-la-luna/

Parra, S. (2021, 12 agosto). Esta impresora 3D de suelo lunar acaba de llegar a la Estación Espacial Internacional para hacer pruebas en. . . Xataka Ciencia. Recuperado 24 de noviembre de 2021, de https://www.xatakaciencia.com/tecnologia/esta-impresora-3d-suelo-lunar-acaba-llegar-a-estacion-espacial-internacional-para-hacer-pruebas-microgravedad

Castillo, A. (2021, 20 agosto). Crean una impresora 3D que empleará el polvo lunar y regolito de Marte para que los astronautas fabriquen sus. 20bits. Recuperado 24 de noviembre de 2021, de https://www.20minutos.es/tecnologia/actualidad/crean-una-impresora-3d-que-empleara-el-polvo-lunar-y-regolito-de-marte-para-que-los-astronautas-fabriquen-sus-propios-materiales-4797501/?autoref=true

TechBit. (2021, 22 agosto). Desarrollan impresora 3D que podrá trabajar con rocas lunares. El Universal. Recuperado 24 de noviembre de 2021, de https://www.eluniversal.com.mx/techbit/desarrollan-impresora-3d-que-podra-trabajar-con-rocas-lunares

Verastegui, J. (2012, 1 diciembre). Impresoras 3D serían utilizadas para crear herramientas con rocas lunares. Tecnoligía21. Recuperado 24 de noviembre de 2021, de https://tecnologia21.com/impresoras-3d-utilizadas-crear-herramientas-rocas-lunares


pulsera 3d

Pulsera para guiar a personas con discapacidad visual hecha por peruanos gana medalla de oro en Corea

Pulsera 3D para Invidentes en Perú

pulsera 3d

Como hemos visto en post anteriores, la impresión 3d y el sector salud y tecnología es uno de los más beneficiados gracias a la innovación que trae consigo. En esta ocasión, hablaremos de  Una pulsera para invidentes realizada en Perú. Este dispositivo ha sido patentado en Indecopi bajo el nombre de Qanwan Qashani.

Qanwan Qashani es un prototipo de pulsera que permitirá a las personas con discapacidad visual transitar de forma autónoma y segura a través de la vía publica sin mayor dificultad.

Este innovador proyecto fue premiado con una medalla de oro en la Exhibición de Inventos y Mujeres de Corea del Sur- KIWIE 2021 (por sus siglas en inglés).

Este prototipo fue creado por un equipo de investigadores de la Universidad Privada del Norte (UPN).

Importancia de la pulsera 3D

El dispositivo ha sido patentado en Indecopi bajo el nombre de Qanwan Qashani, que significa “estoy contigo” en quechua. Esta frase refleja muy bien el concepto del invento.

Lucía Pejerrey, diseñadora industrial y miembro del equipo de investigación, explicó que la pulsera funciona como un asistente para que una persona con discapacidad visual pueda movilizarse de forma independiente y segura.

Inspiración

El diseño de Qanwan Qashani ha sido inspirado en los patrones de la arquitectura y arte prehispánico.

“Quisimos plasmar y representar la cultura de nuestro país. Por eso, nos inspiramos en la estética de la cultura inca para diseñar la pulsera”, Ángela Fernández.

Los jóvenes inventores realizaron algunos prototipos de la pulsera utilizando técnicas de impresión 3D y poniendo a prueba las funciones de los componentes electrónicos. Aunque aseguran que el producto en tamaño original debe ser fabricado con grafeno, un material más ligero y resistente, y con piezas electrónicas que, por el momento, no son accesibles en el Perú.

¿Cómo funciona la pulsera tecnológica?

Esta pulsera cuenta con una pantalla en braille, por la cual el usuario puede recibir mensajes o señales de alerta. Esta pulsera puede conectase vía Bluetooth con una aplicación móvil por la cual la persona con discapacidad podrá seguir indicaciones para llegar a su destino.

También se planea que esta pulsera pueda ser conectada al sistema de transporte público. Así, el usuario podrá recibir información sobre las paradas que debe esperar, cuando puede cruzar calles por los semáforos y que transporte debe abordar.

Una situación que también se tomó en cuenta fueron los peligros a los que una persona con discapacidad puede llegar a estar expuesta al transitar en la ciudad,  por lo que los jóvenes instalaron un sistema de alerta para situaciones de emergencia.

“Incorporamos un botón para que cuando el usuario lo presione, automáticamente se envíe su ubicación en tiempo real a una persona ya determinada, que podría ser un familiar o amigo cercano”, señaló Deivid Yábar, estudiante de Ingeniería Mecatrónica de la UPN. La alerta también se envía cuando un sensor incorporado detecta un incremento en el ritmo cardiaco.

Si el usuario se siente desorientado o perdido, podrá solicitar ayuda a las personas de su alrededor presionando un botón que emite una luz parpadeante y una alarma sonora.

Futuro de Qanwan Qashani

Aunque este proyecto aun es nuevo se tiene una alta expectativa sobre el y su uso en la vida urbana de Perú. Se espera que sus funciones puedan ser aprovechadas al máximo y que en un futuro próximo se pueda vincular con el Metropolitano y en accesos de los principales centros comerciales.

Referencia para este Blog


Guzmán, C. (2021, 24 octubre). Pulsera para guiar a personas con discapacidad visual hecha por peruanos gana medalla de oro en Corea. PQS. Recuperado noviembre de 2021, de https://pqs.pe/actualidad/tecnologia/pulsera-para-guiar-a-personas-con-discapacidad-visual-hecha-por-peruanos-gana-medalla-de-oro-en-corea/

infobae. (2021, 14 octubre). Qanwan Qashani: la pulsera peruana para personas con discapacidad es premiada en Corea. Recuperado noviembre de 2021, de https://www.colorplus3d.com/pulsera-para-guiar-a-personas-con-discapacidad-visual/


Halloween impresión 3d

stl de terror, que el terror se apodere de tu impresora

Halloween impresión 3d

Halloween impresión 3d

¡Halloween llego a ColorPlus! Esta festividad nos emociona tanto como a ti, por eso en este blog decidimos traerte diferentes ideas de impresión para tu fiesta de Halloween. Descubre diferentes decoraciones y disfraces para tener un evento del terror.

Halloween impresión 3d

DECORACIONES

ALIEN

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

CALAVERA

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CALDERO

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

CALDERO DE PULPO

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

CANDELABRO DE CALAVERAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CHARMANDER ESQUELETO

Te recomendamos imprimirlo con el filamento:

Termocromático blanco a azul

Link al archivo stl

CRANEO DE ZORRO

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CRANEO CON ESPADAS

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

Link al archivo stl

ESQUELETO MOVIBLE

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

ÁRBOL ENCANTADO

Te recomendamos imprimirlo con el filamento:

ABS BROWN EARTH

Link al archivo stl

HOMERO THE SHINNING

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

CRANEO DE BRUJAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

MANOS EN LA PARED

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

ABS SKIN

Link al archivo stl

MARIO BOO

Te recomendamos imprimirlo con el filamento:

pla white shark

Link al archivo stl

MANZANA ENVENENADA

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CALAVERA PORTA LÁPICES

Te recomendamos imprimirlo con el filamento:

METÁLICOS

Link al archivo stl

MANOS DE ESTANTE

Te recomendamos imprimirlo con el filamento:

ABS SKIN

Link al archivo stl

TAZÓN DE GATOS

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

METÁLICOS

Link al archivo stl

TROFEO DE TERROR

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

ZOMBIE

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

ABS SKIN

Link al archivo stl

Halloween impresión 3d

LÁMPARAS Y VELAS

CALABAZAS

Te recomendamos imprimirlo con el filamento:

ABS ORANGE AUTUM

Link al archivo stl

CALABAZA DEL GATO CHESHIRE

Te recomendamos imprimirlo con el filamento:

ABS ORANGE AUTUM

Link al archivo stl

CALAVERAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

PORTA VELAS DE CALAVERAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

NUBE DE EXPLOSIÓN ATÓMICA

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

VELAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CALDERO BURBUJEANTE

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CALDERO LUMINOSO

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

Halloween impresión 3d

DISFRACES

ARETES DE BRUJA

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

BRAZALETE EXPANDIBLE

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

CASCO DE FLASH

Te recomendamos imprimirlo con el filamento:

METÁLICOS

Link al archivo stl

CORONA DE PRINCESA

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

CUERNOS DE MALÉFICA

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

SUJETADOR DE PELO DE ESQUELETO DE DRAGÓN

Te recomendamos imprimirlo con el filamento:

PLA White Shark

Link al archivo stl

SUJETADOR DE PELO DE CALAVERA

Te recomendamos imprimirlo con el filamento:

PLA White Shark

Link al archivo stl

Halloween impresión 3d

MÁSCARAS

MÁSCARA DEL JUEGO DEL CALAMAR

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

KITSUNE

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

UNICORNIO

Te recomendamos imprimirlo con el filamento:

ABS PURPLE ORCHID

Link al archivo stl

MECÁNICA

Te recomendamos imprimirlo con el filamento:

METÁLICOS

Link al archivo stl

ESQUELETO DE GATO

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

MÁSCARA COMPLETA

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

DEMONIO

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

ONI MASK

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

Halloween impresión 3d

CORTADORES DE GALLETAS

CHARRO CALAVERA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

CALABAZA MALVADA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

COVID-19

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

FANTASMITA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

JACK NAVIDEÑO

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

MOUNSTRO

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

MURCIELAGO

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

SCREAM

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

RIP

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

SOMBRERO DE BRUJA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

FANTASMA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

ROLLO DE CALAVERAS

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

discapacidad visual

Cómo la impresión 3D ayuda a la discapacidad visual

Cómo la impresión 3D ayuda a la discapacidad visual

discapacidad visual

Una nueva aplicación de la impresión 3D de la que tal vez no se ha hecho mucha difusión, pero que es igual de importante que se hable en esta sección de blogs, es la creación de maquetas especiales para personas menores de edad ciegas y débiles visuales realizadas por la Facultad de Arquitectura de la Benemérita Universidad Autónoma de Puebla (FABUAP).

Dicha universidad realizó un proyecto de accesibilidad e inclusión social en los ámbitos urbano y arquitectónico, partiendo del reconocimiento de la diversidad y el fomento de la participación ciudadana. Cuenta con dos propósitos: promover la accesibilidad al patrimonio urbano y arquitectónico del centro histórico de la ciudad de Puebla, México, entre niños con ceguera y debilidad visual y servir en la enseñanza de la movilidad autónoma de los menores.

El mapa en volumen de Puebla fue un proyecto de los doctores Adriana Hernández Sánchez y Christian Enrique de la Torre Sánchez, y los alumnos Luis Gerardo Córdova Moreno, Francisco Javier Vázquez y Jesús Manuel Mejía Sánchez, quienes a su vez integran el grupo Re Genera Espacio.

Se trata de una propuesta para dar acceso a niñas y niños con discapacidad visual al patrimonio cultural en entornos urbanos y arquitectónicos. Para ello fabricaron dos modelos hápticos (táctiles) impresos en 3D de una maqueta del Templo de San Antonio y un plano cartesiano de las 90 manzanas del Centro Histórico de la ciudad de Puebla.

“Son maquetas no convencionales. Nosotros adecuamos la realidad a texturas y volúmenes, ya que el elemento más importante es el dedo. Por lo tanto, los usuarios a través del tacto sienten los diferentes relieves y con ello se indica información relevante, como puntos de interés u obstáculos”.

Que pasa en México

Para este caso, el equipo de trabajo se basó en estadísticas brindadas por el Censo Nacional de Población y Vivienda del 2010 proporcionado por el INEGI. Según la encuesta, el 6.4% de la población mexicana (7.65 millones de personas) reportó tener al menos una discapacidad, siendo las principales la discapacidad motriz (56.1%), visual (32.7%) y auditiva (18.3%).

En el país, existen 2.5 millones de personas con alguna discapacidad visual, incluyendo la ceguera. Dentro de este grupo, el 63.5% no utiliza algún tipo de ayuda técnica, por lo que sus condiciones de autonomía y movilidad son limitadas, generando una condición de dependencia mayor. Solo el 12.2% utiliza el bastón guiador, 4.6% el sistema Braille, 1.6% una computadora de audio y el 18.1% recurre a otro elemento auxiliar de comunicación o desplazamiento.

El proceso

En 2018, el equipo realizó maquetas de papel de la traza urbana del primer cuadro del centro de la ciudad de Puebla para determinar las dimensiones a escala de las manzanas y calles, considerando que fueran distinguibles al tacto con los dedos de las manos.

Posteriormente, se realizaron las primeras impresiones en tecnología 3D, haciendo uso el software de modelado Rhinoceros. Se determinó un área máxima de impresión de 20 x 20 cm por placa, considerando las condiciones de las impresoras disponibles en Puebla. Esto, con la intención de que cada una representara cierto número de manzanas del centro histórico de la ciudad. En total, se imprimieron dieciocho placas ensamblables de prueba.

Era indispensable que los elementos de la maqueta se concibieran como de fácil lectura táctil y que, a través de la digitación, los niños pudieran identificar calles y avenidas, además de texturas y referencias de dimensiones en largo, ancho y espesor. Para la impresión de los modelos se adquirieron materiales de tres tonalidades diferentes y se realizaron pruebas con los niños de la Asociación Leyer’s de Puebla para conocer las diferencias de apreciación según diversos colores y texturas

Durante el ejercicio, a los niños menores de 8 años fue necesario tomarles de la mano para ayudarles a realizar el recorrido táctil por la maqueta, mientras que a los mayores solo fue necesario guiarlos con la voz.

La evaluación por parte de los niños fue positiva. De los ocho niños que participaron, seis con ceguera y dos con debilidad visual, seis lograron una comprensión del edificio, mientras que todos entendieron las áreas explicadas por el instructor. Siete consideraron que la escala era correcta, seis percibieron las texturas de la maqueta y siete coincidieron en que era importante conocer el lugar, lo cual muestra que la maqueta funcionó como incentivo para despertar la curiosidad sobre los edificios históricos en los menores.

En el caso de los dos menores con debilidad visual, se les pidió que tocarán y observarán algunos detalles arquitectónicos impresos a mayor escala (un fragmento de muro, un nicho y una espadaña) en diferentes colores: azul, naranja y amarillo-verde. Esto se hizo con la intención de preguntarles si distinguían mejor algún color que otro. Los niños aseguraron que el amarillo se distinguía mejor, mientras con el azul y el naranja se identificaban mejor las profundidades.

Este proyecto ganó un reconocimiento como una de las Buenas Prácticas de Accesibilidad en 2019 por la Design for All Foundation, con sede en Barcelona, España, en la categoría Proyectos, propuestas, metodologías y estudios.

Los Premios Golden Cubes se crearon para honrar a las personas y organizaciones que ayudan a la niñez y juventud a comprender la arquitectura. En esta edición y tras un proceso de selección nacional, 29 países presentaron 71 nominaciones a un jurado internacional en cuatro categorías: Instituciones, Escuelas, Medios escritos y Medios audiovisuales.

En la categoría Instituciones compitieron 27 trabajos, de estos la propuesta ganadora fue “Una ciudad en expansión” de Suecia; mientras “Maquetas táctiles para niños con ceguera y debilidad visual” de México y “Build” de Reino Unido obtuvieron menciones especiales.

Como se ve en el Mundo

A nivel internacional existen diversas iniciativas donde las maquetas impresas con tecnología 3D proponen un mejor acercamiento al espacio urbano y arquitectónico a personas con alguna discapacidad visual.

Dinamarca

En 2011, la Asociación Danesa de Ciegos planteó una idea de ladrillos con letras y números en sistema Braille que permitieran a niños con discapacidad visual la lectura a través del tacto. En 2019 la empresa LEGO refinó el concepto y empezó a probarlo en Reino Unido y Noruega por medio del proyecto “Braille Bricks”.

Argentina

La empresa IN Planos Hápticos elabora modelos urbanos y arquitectónicos con dimensiones máximas de 60 x 100 cm, utilizando materiales plásticos y diferenciando texturas y colores para representar extensiones considerables del territorio. Además, incorpora recorridos, contadores de pasos y simbología en sistema Braille, porque, como mencionan en su página de Facebook, busca la lectura para personas con discapacidad visual, pero también la accesibilidad para todos.

España

El museo Vilamuseu es uno de los principales referentes internacionales de accesibilidad en espacios culturales. Allí se pueden tocar muchas piezas originales, réplicas y maquetas impresas en 3D, hay elementos de accesibilidad aumentada e instrumentos donde es posible oler los aromas reales de objetos del pasado. Los textos están escritos en lengua de signos española y en audio descripción subtitulada para personas sordas y con discapacidad auditiva y visual en una guía multimedia fácil de usar, accesible y gratuita.

Italia

Otro referente importante a nivel internacional es el museo Tattile Statale Omero, considerado un modelo de excelencia en el escenario de oportunidades culturales para personas ciegas y débiles visuales que promueve exposiciones táctiles de importancia nacional e internacional. Al igual que el Vilamuseu, plantea que las maquetas táctiles deben ser lo más fieles posible a la realidad ya que la precisión de los detalles es muy importante en el momento de tocar los elementos de la obra artística.

Dentro de México existen varias discapacidades además de la visual que muchas veces no son tomadas en cuenta. Gracias a personas como el equipo de la BUAP y a la impresión 3D, se puede facilitar la vida de cientos de personas con alguna dificultad. Como hemos visto en blogs pasados, la impresión 3D nos da una esperanza para todas aquellas personas con algún tipo de limitación motriz o visual, así como crecer tecnológicamente por un mejor futuro.


Referencias para este Blog

Anderson, B. (09 de junio de 2021). Yo también. Obtenido de Yo también: https://www.yotambien.mx/actualidad/maquetas-en-3d-una-idea-poblana-con-premio-internacional/

El Universal Puebla. (03 de junio de 2021). El Universal Puebla. Obtenido de El Universal Puebla: https://www.eluniversalpuebla.com.mx/universidades/maquetas-buap-para-ciegos-ganan-premio-internacional-desing-all-foundation

Manatí MX. (07 de septiembre de 2020). Manatí MX. Obtenido de Manatí MX: https://manati.mx/2020/09/07/buap-maquetas-ninos-con-ceguera-o-debilidad-visual/

Sánchez, A. H., Sánchez, C. E., Sánchez, J. M., & Moreno, L. G. (s.f.). redalyc.org. Obtenido de redalyc.org: https://www.redalyc.org/journal/748/74862683004/html/

discapacidad visual

discapacidad visual

discapacidad visual


restauracion de imagenes religiosas

Restauración de imágenes religiosas con la impresión 3D

Restauracion de imagenes religiosas con la impresión 3D

restauracion de imagenes religiosas

Puede que por el título de este blog te cause algún tipo de intriga conocer cómo es que la impresión 3D ha llegado al ámbito religioso. Cuando hablamos de impresión 3D es muy difícil relacionar la religión en este ámbito, pero están más cerca de lo que piensas. La impresión 3D no es de un solo sector como lo hemos visto, y en este caso ha traído grandes beneficios en la parte de esculturas religiosas catolicas en los últimos años.

La impresión 3D permite reproducir varias piezas y hasta obras religiosas en distintos materiales. Esta tecnología trajo varias mejoras en restauraciones, ya que hace de manera más rápida y ligera su reproducción, además de económica.

Dado que las piezas fueron hechas hace mucho tiempo con técnicas manuales, con medidas especificas, puede resultar más tardado hacer de 0 un modelo 3D con un programa de modelado. Una gran opción que han usado diferentes empresas como Onevoxel es el uso de un escáner 3D.

Onevoxel es una empresa navarra especializada en la impresión de esculturas religiosas. Esta empresa ha digitalizado y replicado las imágenes de San Miguel de Aralar, la Virgen del Santo Cristo de Cataláin o la de Nuestra Señora de Lourdes en Tudela, entre otras.

Qué materiales son los que se ocupan

Las obras religiosas comúnmente son elaboradas con hormigón o un material ligero para que al ser expuestas puedan tener una mayor protección. Con la impresión 3D, se pueden crean piezas exactas que pueden recuperar detalles que se han perdido con el desgate del tiempo.

La idea principal es conseguir un material que pueda mantener los detalles, que sea resistente y ligero. Algunos optan por el uso del PLA, ya que es un material económico y resistente, además por gran adaptabilidad.

Proceso de creación

Escaneo

Lo primero que se hace es realizar la digitalización de la pieza por medio de un escáner 3D. Con el escáner se tiene una imagen más certera para pasar al siguiente paso.

Impresión

La siguiente parte es preparar el archivo para impresión 3D. Las esculturas religiosas tienen la ventaja que pueden ser escalables, o sea, que pueden aumentar o disminuir sus medidas de manera más fácil.

Lijado y pintura

Una vez impresa la pieza, pasa el momento de lijarla para que quede con un mejor acabado y sea más fácil pasar a pintar la pieza.

Virgen del Belén del Convento de San Clemente

Uno de los ejemplos de como la impresión 3D ha beneficiado a las esculturas religiosas es el caso de la Virgen del Belén del Convento de San Clemente en Sevilla, España.

La escultura de la Virgen apareció con uno de sus ojos roto, sin presentar signos de golpes o alguna causa externa para provocar la ruptura de este ojo.

Gracias a la impresión 3D fue más fácil y rápido poder restaurar la pieza sin necesidad de tener que abrir una vía de abordaje para colocar la nueva pieza.

Beneficios principales

-Realizar réplicas en cualquier tamaño (Ejemplo: Dirigidos a la Semana Santa infantil por ser más ligeros).

-Puede apoyar a disponer de una copia digital fiel al original, antes de que se rompa o deteriore la escultura por cualquier motivo inesperado (Acción humana, paso del tiempo, etc.).

-Mantiene la preservación de la pieza original, ya que las piezas manipuladas serían las impresas en 3D, por lo cual la original se puede conservar mejor.

-Facilita la reproducción de piezas con geometría orgánica, como esculturas o imágenes religiosas.

-Adaptación de obras para personas con limitaciones sensoriales.

-Uso de las piezas para más exhibiciones y eventos de índole religiosa como Semana Santa.

Suena alucinante cómo la impresión 3D llega a sectores tan poco comunes, pero que a su vez traen mayores beneficios. La religión y sus obras forman parte de un precedente histórico, por ello el poder restaurarlo y preservarlo se ha convertido en una tarea importante, también se ha encontrado en la impresion 3D cómo mejorar las condiciones de algunos eventos litúrgicos a partir de la réplica de piezas únicas.

Si tu también estas interesado en imprimir algunas piezas religiosas puedes entrar a este link https://cults3d.com/es/etiquetas/religioso para obtener tus archivos e iniciar hoy mismo.

restauracion de imagenes religiosas

restauracion de imagenes religiosas

Referencias usadas para este blog


Catalán, C. (17 de febrero de 2020). NavarraCapital. Recuperado el octubre de 2021, de NavarraCapital: https://navarracapital.es/la-impresion-3d-sube-a-los-altares/

SICNOVA. (3 de junio de 2020). SICNOVA. Recuperado el octubre de 2021, de SICNOVA: https://sicnova3d.com/blog/casos-de-exito/restauracion-de-una-talla-religiosa-con-tecnologia-3d-virgen-del-belen-del-convento-de-san-clemente-sevilla/

todo 3d. (s.f.). todo 3d. Recuperado el octubre de 2021, de todo 3d: https://todo-3d.com/hermandades/?v=911e8753d716


bioimpresión 3d

Bioimpresión 3D

Bioimpresión 3D

La bioimpresión celular 3D es una tecnología de vanguardia que usa la tecnología de fabricación aditiva de la impresión 3D. Gracias a ese conjunto, se pueden crear tejidos vivos como vasos sanguíneos, huesos, cartílagos o piel mediante la adición capa a capa de un material sin la necesidad de molde.

El material que se utiliza no son filamentos o resinas, sino un componente denominado como BIOTINTA o Biomateriales. Estas Biotintas, elaboradas con células vivas, un material estructural y factores de crecimiento combinadas con hidrogeles. Son cargados en los inyectores de la bioimpresora y  permite mimetizar la arquitectura del tejido celular de interés.

Los principales componentes son: las células vivas representativas del tejido a imprimir; los biomateriales para la generación de la estructuras o andamiajes, entre otros colágeno, gelatina ó hidrogeles a base de ácido hialurónico o polietilenglicol, componentes para el mantenimiento celular, así como otros compuestos ó moléculas que permita la solidificación ó con capacidad de reticular.

bioimpresión 3d
bioimpresión 3d

Metales


Presentan alta resistencia mecánica, similar a la del hueso, desarrollándose sobre todo para regeneración de tejido óseo. Se han usado aleaciones cromo-cobalto, titanio, nitinol y aceros inoxidables.

bioimpresión 3d

Cerámicos


Han sido utilizados para la impresión 3D de andamios gracias a su gran resistencia a la compresión y biocompatibilidad; siendo también capaces de generar andamios para regeneración ósea. Se han estudiado andamios impresos con hidroxiapatita (naturalmente presente en el hueso) e hidroxiapatita más trifosfato de calcio para regenerar hueso.

bioimpresión 3d

Polímeros


Varios polímeros sintéticos, naturales e híbridos se usan para fabricar andamios biomédicos 3D porosos, incluyendo poli(etilenglicol) diacrilato y metacrilato de gelatina natural, empleados para fabricar hidrogeles. Los hidrogeles poseen propiedades mecánicas ajustables, son biocompatibles y tienen la capacidad mantener su estructura 3D al ser hidratados.

Algunas técnicas de bioimpresión son:

bioimpresión 3d

Por extrusión


Se produce mediante la extrusión de biomateriales para la creación de patrones 3D y construcción de células. Esta técnica presenta ventajas como el control de la temperatura.

bioimpresión 3d

Asistida por láser


Se basa en la utilización de un láser para colocar biomateriales sobre un material específico. Alguna de las ventajas que tiene esta impresión es la precisión y la falta de contacto, lo que resulta de vital importancia para no contaminar el resultado.

bioimpresión 3d

Por ondas acústicas


 Esta técnica puede ser utilizada para el manejo celular, con ventajas como la precisión no intrusiva.

bioimpresión 3d

SWIFT


Permite la posibilidad de imprimir vasos sanguíneos para el soporte de órganos que han sido construidos con células OBB, o en su defecto con alto porcentaje de estas. Algunas de las ventajas de esta técnica es la ampliación del tiempo de vida celular.

Qué se ha logrado

El primer ovario funcional

En 2016, un equipo de científicos de la Universidad de Northwestern anunció que logró imprimir en 3D e implementar el primer ovario funcional en un ratón. Gracias a la bioimpresión, se pudo crear una estructura similar a un ovario con la capacidad para formar ovocitos, o células reproductivas femeninas.

Para su creación utilizaron un material biológico derivado del colágeno, lo cual permite que el ovario cuente con vasos sanguíneo y finalmente sea capaz de desarrollar la ovulación.

Para probar su desarrollo las prótesis de ovarios impresas fueron implantados en ratones a los cuales se les había retirado un ovario anteriormente. Después del procedimiento, los ratones recuperaron la ovulación normal e incluso podrían dar a luz a crías.

Los resultados del proyecto ofrecen una forma para el tratamiento para la infertilidad femenina, está dirigido principalmente a las niñas que han atravesado cáncer infantil y por los tratamientos de quimioterapia han perdido alguna capacidad en su sistema reproductor.

bioimpresión 3d
bioimpresión 3d

Aplicaciones en Farmacéutica y Alimentos

Además de la medicina, otra área beneficiada ha sido la farmacéutica, ya que gracias a la bioimpresión se han estudiando mecanismos de acción de determinadas patologías para identificar nuevos posibles fármacos. Dentro del sector dermocosmético, la bioimpresión es utilizada para crear piel y estudiar el efecto de determinados compuestos o fórmulas.

Otro sector de aplicación es el alimentario, bien para el desarrollo de ingredientes y productos con efecto funcional, ya que esta tecnología permite crear modelos in vitro más precisos de aquellas funciones fisiológicas de interés, así como para la fabricación de carne in vitro, una de las alternativas tecnológicas más relevantes para el abastecimiento sostenible de proteínas. La bioimpresión 3D permite crear los andamiajes sobre los que se deposita la células de tejido muscular para su posterior cultivo en biorreactor, apunta Lidia Tomás.

La Bioimpresión 3D en México

Aunque la mayoría de los avances e implementaciones han sido en Estados Unidos y Europa, la bioimpresión 3D ha tocado Latinoamérica, y uno de los países donde se tiene un mayor avance es México. Dentro del laboratorio del Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez,  En el área de la ingeniería biomédica intenta imprimir tejidos, e incluso órganos, para hacer frente a diversas patologías. Fundamentalmente, aquellas en las cuales se necesite regenerar tejidos o demanden un trasplante.

La intención de obtener el equipo fue para regenerar tejido cardíaco y cartílago artificial en un término de tres años”

Según un estudio realizado en International Journal of Bioprinting en 2019, México ocupa el segundo lugar en Latinoamérica en cuanto a número de artículos publicados en el área. En ese sentido sigue a Brasil, y contribuye al desarrollo en una región cuyo aporte en el escenario global es aún modesto. Menos del 3% de los trabajos publicados provienen de América Latina y ningún país latinoamericano ha registrado todavía alguna patente.

El Rol de Latinoamérica para el avance dentro de la biomedicina y la bioimpresión 3D cada vez tiene un panorama más amplio. Latinoamérica cuenta con investigadores entrenados en el desarrollo de cultivos celulares y una creciente disponibilidad de la citada tecnología en los laboratorios. Si a eso se le suma financiación pública o privada para proyectos de investigación, el panorama puede ser alentador. Algunos especialistas coinciden que los próximos 5 años serán vitales y México parece haber tomado nota de ello.

bioimpresión 3d
bioimpresión 3d

Bioimpresión de tumores

Otro de los tópicos de investigación de este equipo tiene que ver con recrear in vitro lo que ocurre en un tejido tumoral. Un tumor maligno es una compleja estructura tridimensional que establece interacciones con tejidos que lo rodean.

En ciertos cánceres dar con un conocimiento más profundo acerca de la fisiopatología o con tratamientos más efectivos ha sido particularmente desafiante. Los expertos creen que se debe en parte a que los sistemas de abordaje 2D tradicionales no permiten reflejar la complejidad de una neoplasia. Algo que en el laboratorio podría lograrse gracias a la bioimpresión 3D de tejidos tumorales a partir de células cancerosas y la incorporación posterior de esa estructura en un dispositivo microfluido similar a un chip. Esta herramienta, conocida como “tumor en un chip”, existe y es motivo de investigación en diversas partes del mundo. Brinda una visión más dinámica de la patología neoplásica y permite proyectar mejores diagnósticos y tratamientos para los pacientes.

La bioimpresión 3D cada vez va teniendo más fuerza, principalmente por la alta demanda que se ha tenido en los últimos años por la falta de donadores de órganos. Gracias a los avances, al día de hoy podemos experimentar y realizar investigaciones con el fin de crear de varios de estos órganos, encontrar la cura a diversas enfermedades y descubrir nuevas formas de alimentarnos o de testear productos dermatológicos. Con ello, vemos poco a poco cómo se va ampliando un nuevo panorama y se tiene una gran expectativa con la impresión 3D en este sector.

VER TIENDA 

YouTube video player

Referencias usadas para este blog


ADRAGNA, C. (s.f.). Impresión 3D y caracterización de andamios de. Recuperado el septiembre de 2021, de Impresión 3D y caracterización de andamios de: https://rdu.unc.edu.ar/bitstream/handle/11086/6522/Proyecto%20Integrador%20Adragna-Jurczyszyn.pdf?sequence=1&isAllowed=y

AECOC. (s.f.). AECOC. Recuperado el Septiembre de 2021, de AECOC: https://www.aecoc.es/innovation-hub-noticias/que-es-la-bioimpresion-y-que-utilidad-tiene/

Bernardo, A. (20 de junio de 2017). hipertextual. Recuperado el septiembre de 2021, de hipertextual: https://hipertextual.com/2017/06/impresion-3d-tejidos-humanos

C, L. (07 de noviembre de 2019). 3D Natives. Recuperado el septiembre de 2021, de 3D Natives: https://www.3dnatives.com/es/bioimpresion-futuro-medicina-180520172/#!

C., L. (07 de abril de 2016). 3D Natives. Recuperado el Septiembre de 2021, de 3D Natives: https://www.3dnatives.com/es/la-bioimpresion-crea-ovario-07042016/#

Fuentes, F. (Febrero de 2021). OCEANO medicina. Recuperado el Septiembre de 2021, de OCEANO Medicina: avanza

IDONIAL. (s.f.). IDONIAL. Recuperado el septiembre de 2021, de IDONIAL: https://www.idonial.com/es/conocimientos-clave/biofabricacion

international journal of bioprinting. (30 de septiembre de 2019). international journal of bioprinting. Recuperado el septiembre de 2021, de international journal of bioprinting: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310266/

Lavallén, H. (11 de abril de 2021). Conclusión. Recuperado el septiembre de 2021, de Conclusión: https://www.conclusion.com.ar/info-general/imprimiendo-vida-la-bioimpresion-3d/04/2021/

Rodríguez, G. (08 de julio de 2021). Life Sciences Lab. Recuperado el septiembre de 2021, de Life Sciences Lab: https://lifescienceslab.com/noticia/gracias-a-la-bioimpresion-3d-es-posible-crear-tejidos-mediante-mecanismos-de-impresion

bioimpresión 3d

bioimpresión 3d

bioimpresión 3d

bioimpresión 3d

bioimpresión 3d

bioimpresión 3d

bioimpresión 3d


primer impresora 3D

Cohetes impresos en 3D

primer impresora 3D

primer impresora 3D

Cohetes impresos en 3D

Desde hace muchos años, el sueño del ser humano por conocer el espacio exterior ha representado un reto que poco a poco ha ido avanzando. Cuesta creer que hace 52 años se haya realizado el primer vuelo a la luna registrado. Ahora, se buscan nuevas alternativas que puedan hacer eficiente la llegada a nuevas partes del universo. Relativity Space es una empresa dedicada a la fabricación de cohetes espaciales, con un diferenciador en particular, utiliza la primer impresora 3D en la industria espacial. Gracias a la impresión 3D busca abaratar los costes y fabricar  iteraciones más rápidas.

Relativity Space ha desarrollado en los últimos años 2 de sus famosos cohetes, el Terran 1 y el Terran R. Estos cohetes están diseñados para poder transportar un aproximado de 20,000 kg cada uno y se espera que puedan ser reusables. A través de la impresión 3D buscan resolver diferentes problemáticas que se presentan con los métodos convencionales. A continuación te mostramos una comparativa de las mejoras que ha implementado Relativity con la primer impresora 3d para el espacio.

Método Tradicional

  • Fiabilidad: Más de 100.000 piezas
  • Velocidad: Tiempo de construcción de 24 meses y 48 meses de tiempo de iteración
  • Flexibilidad: Cadena de suministro compleja y alta complejidad física

Relativity Space

  • Fiabilidad: 100 veces menos piezas
  • Velocidad: Tiempo de producción 10 veces más rápido
  • Flexibilidad: Sin herramientas fijas y una cadena de suministro simple
  • Optimización: Aumento de la calidad de la iteración y mejoras en el tiempo

¿Cómo lo hacen?

Comenzando con cohetes, nuestra fábrica de Stargate integra verticalmente robótica, software y tecnologías de impresión 3D patentadas para digitalizar la fabricación. Nuestro proceso patentado optimiza todos los aspectos del desarrollo aeroespacial y permite un acceso al espacio más rápido, más frecuente y de menor costo.

¿Cuál es la diferencia entre Terran 1 y Terran R?

Terran 1

EL PRIMER COHETE TOTALMENTE IMPRESO EN 3D

Como vehículo de lanzamiento de próxima generación, Terran 1 está diseñado para el futuro del despliegue y reabastecimiento de constelaciones. Su arquitectura innovadora, única e impulsada por software es capaz de adaptarse a las necesidades cambiantes de los clientes de satélites, al mismo tiempo que proporciona el servicio de lanzamiento más ágil y asequible del mercado. Diseñado e impreso en los EE. UU., Terran 1 es el producto más innovador que ha surgido de la industria de fabricación aeroespacial desde los albores de la privatización del espacio hace 20 años.

MÁXIMO DE CARGA ÚTIL: 1.250 KG A 185 KM LEO
CARGA NOMINAL: 900 KG A 500 KM SSO
CARGA ÚTIL DE ALTA ALTITUD: 700 KG A 1200 KM SSO

Terran R

PRIMER COHETE TOTALMENTE REUTILIZABLE

Terran R es totalmente reutilizable, incluidos sus motores, primera etapa, segunda etapa y carenado de carga útil, y será capaz de lanzar más de 20.000 kg a la órbita terrestre baja (LEO) en una configuración reutilizable.

Terran R se lanzará desde Cabo Cañaveral a partir de 2024.

INSPIRADO EN LA NATURALEZA

Terran R tiene características aerodinámicas únicas con estructuras optimizadas y generadas algorítmicamente. El proceso de impresión 3D patentado de Relativity está habilitado por software y fabricación basada en datos, materiales impresos en 3D exóticos y geometrías de diseño únicas que no son posibles con la fabricación tradicional, lo que impulsa una tasa más rápida de progreso e iteración compuestos en la industria.  

Qué podemos esperar

Gracias a la tecnología y versatilidad que pueden manejar las impresoras 3D, Relativity considera que se puede hacer más simple el proceso para convertir la materia prima en un cohete que hoy en día realizan en 60 días. Lo que nos pondría a un paso más cerca del espacio y la posibilidad de los vuelos comerciales.

Relativity tiene una gran visión y optimismo dentro de este proyecto que cada vez más se hace notar. Con todo lo anterior, falta muy poco tiempo para que Relativity Space muestre al mundo su creación a través de la tecnología impresa en 3D y con ello la humanidad está más cerca de pisar suelos en otros planetas, conocerlos y dentro de los objetivos de Tim Ellis, cofundador y CEO de esta compañía, habitarlos.

Así que preguntémonos ¿Habrá algún límite para la impresión 3D?

YouTube video player


Referencias para este blog:

Actualidad Aeroespacial. (09 de Junio de 2021). Actualidad Aeroespacial. Recuperado el Septiembre de 2021, de Actualidad Aeroespacial: https://actualidadaeroespacial.com/relativity-space-muestra-el-terran-r-el-primer-cohete-reutilizable-impreso-en-3d/

IMPRIMALIA 3D. (24 de Octubre de 2018). IMPRIMALIA 3D. Recuperado el Septiembre de 2021, de IMPRIMALIA 3D: http://imprimalia3d.com/noticias/2018/10/23/0010417/stargate-mayor-impresora-3d-metal-del-mundo-usada-construir-cohetes

RELATIVITY SPACE. (s.f.). RELATIVITY SPACE. Recuperado el Septiembre de 2021, de https://www.relativityspace.com/: https://www.relativityspace.com/

Rus, C. (25 de Febrero de 2021). XATAKA. Recuperado el Septiembre de 2021, de XATAKA: https://www.xataka.com/espacio/terran-r-cohete-reusable-e-impreso-3d-que-busca-competir-tu-a-tu-falcon-9-spacex

primer impresora 3D

primer impresora 3D


protesis 3d

Ayúdame 3D prótesis para personas

Protesis 3d

Protesis 3d

Ayúdame3D es una entidad española que fomenta el valor social de la tecnología a través de programas de concienciación tecnológico-social con el fin de ayudar a colectivos vulnerables de todo el mundo.

Gracias a ello crea y entrega brazos impresos en 3D es decir las protesis 3d, denominados trésdesis, de manera gratuita a personas con discapacidad. Reduciendo así la desigualdad a la que se enfrentan, mejorando su calidad de vida y proporcionando mejores oportunidades de empleabilidad y escolarización.

Proyecto de las protesis 3d

Este proyecto nace en 2017 a través de Guillermo Martínez, que a la edad de 22 años diseñó la primera prótesis para personas que no tienen codo impresa en 3D desde su habitación. Actualmente maneja su propia organización que fabrica y reparte estas piezas gratuitamente en más de 55 países.

Todo empezó con un viaje a Kenia

En una entrevista dada a EL País habla de cómo fue que inició todo este proyecto. Cuenta que al terminar la carrera se sentía desbordado. “El último curso fue difícil e intenso. Necesitaba desconectar”. Gracias a Edurne, una amiga de su hermana que un año previo estaba en un orfanato en Bamba, Kenia, nació la primera imagen de este gran proyecto. “Enseñaba a los niños inglés, que allí es muy importante, y me pareció un buen plan”.

En primera instancia quería llevar juguetes impresos, pero a su vez Guillermo quería hacer algo con lo que pudiera ayudar realmente. Buscando en internet encontró plantillas para imprimir en 3D dispositivos para niños sin dedos. “Pregunté en el orfanato si alguien precisaba algo similar”. Le dijeron que no, pero que en el pueblo había cinco personas que les faltaba un brazo. Así que le mandaron las necesidades y medidas de cada caso y, durante los tres meses previos al viaje, Martínez pasó horas encerrado en su cuarto diseñando, imprimiendo, probando, deshaciendo y rehaciendo prótesis. Hasta que creó un prototipo capaz de abrir y cerrar los dedos con un ligero movimiento de hombro, codo o muñeca, según el modelo, llamados Vicky, Mery y Nelly.

protesis 3d

Pero… ¿qué son las Trésdesis?

Las trésdesis son brazos impresos en 3D con movilidad prensil gracias a la articulación que tenga cada persona (muñeca, codo, hombro). Dichos modelos están basados en los modelos originales de Enabling The Future, incorporando desde ONG AYÚDAME 3D un nuevo modelo para personas sin codo.

protesis 3d


Mano para personas con muñeca. Puede abrir y cerrar los dedos gracias al movimiento de la muñeca.


protesis 3d


Brazo para personas con codo. Puede abrir y cerrar los dedos gracias al movimiento del codo.


protesis 3d


Brazo para personas sin codo. Puede abrir y cerrar los dedos gracias al movimiento del hombro. Innovación de Ayúdame3D.


protesis 3d

“Nuestras trésdesis están fabricadas por nuestra plataforma de expertos/as en impresión 3D con un material llamado PLA, un plástico proveniente de recursos vegetales como el almidón de maíz”

El mecanismo de todos los tipos es similar: con el movimiento de articulación natural de la persona se activa un mecanismo de hilos de nylon que hace que los dedos cierren con fuerza y al deshacer este movimiento unas gomas devuelven los dedos a su posición inicial.

“Buscaba algo muy sencillo, sin electrónica, porque, al ser para un lugar sin recursos tecnológicos, debía ser una pieza fácil y barata de reparar”.

Después de 5 años

Ya han pasado 5 años desde que este proyecto vio sus primeras luces, y además de las trésdesis realizan diferentes aplicaciones que sean posibles gracias a la impresión 3D para protesis 3d. En este tiempo, han podido crear diferentes ayudas para diferentes sectores, como lo son las cajas Chemobox porta sueros, máscaras protectoras para la contingencia sanitaria contra el Coronavirus, dispensadores de pastillas para personas con Parkinson

protesis 3d

CHEMOBOX

Iniciativa nacida en 2018 cuando @bdmaisori pidió por Twitter una caja de batman para su hijo Iván que estaba en el hospital. Desde Ayúdame3D como otros twitteros nos pusimos a imprimir sin pensarlo.

Tras ello no hemos dejado de imprimir para cualquier familia que la necesite.

protesis 3d

PASTILLEROS PARA PERSONAS CON PARKINSON

Gracias a la idea de @brianalldridge podemos desarrollar un pastillero que permite sacar una sola pastilla para evitar que se desparramen todas y así mejorar el día a día de muchas personas que sufren esta situación.

protesis 3d

Caretas sanitarias

Más de 20.000 personas fueron ayudadas con dispositivos de protección contra el virus y los entregamos en más de 400 centros de toda España.

Un aspecto a resaltar sobre Ayúdame3D es que no venden las prótesis sino que las regalan. “Las personas pueden ponerse en contacto con nosotros de forma directa, o pueden hacerlo a través de las entidades sociales que nos ayudan y nos facilitan la información de las personas que las necesitan”. Las personas que estén interesadas en solicitar una trésdesis pueden ingresar a la página web de esta organización, únicamente tienen que llenar un formulario por medio de Google, donde deben enviarse fotografías y vídeo de la mano o brazo que hay que realizar para la persona beneficiaria, y esperar a que la organización se ponga en contacto a través de correo electrónico para informarle de los avances en ese proyecto.

protesis 3d

Pero… entonces ¿Cómo se mantiene a flote este proyecto de las protesis 3d?

En entrevista con Iberdrola, Guillermo comenta: ¨Hay mucha gente, muchas empresas y muchas entidades sociales que colaboran a través, por ejemplo, de sus programas de Responsabilidad Social Corporativa (RSC) y la verdad es que ese es el empuje que necesitamos para poder seguir con el proyecto. Gracias a este esfuerzo estamos consiguiendo llegar a más de 150 personas anualmente y estamos presentes en 34 países.”

Ayúdame3D es una entidad híbrida en parte ONG y parte modelo B2B (“Businees to business”) con programas de concienciación social para colegios y empresas. En los colegios hacen formación para profesores en técnicas de impresión 3D y con las empresas hacen team building presenciales o virtuales y merchandinsing para eventos puntuales, y todos los beneficios van destinados a seguir creando prótesis para personas. Por lo que continuamente están formando alianzas sociales en las que intentan capacitar a personas en diferentes países para tomar medidas, recibir dispositivos y mantener seguimiento a largo plazo, varios de estos dispositivos han sido entregados a niños y niñas, y han hecho que éstos sean funcionales de acuerdo a su crecimiento.

Además han creado aulas internacionales en diseño e impresión 3D en todo el mundo. “No solo ayudamos sino que enseñamos a ayudar. Creamos aulas tecnológicas en diferentes países formando a estudiantes de la zona en diseño e impresión 3D para, además de entregar nuestras trésdesis de manera directa, para que aumenten sus conocimientos y consigan mejores oportunidades laborales.”

Así que ya lo sabes, si te interesa recibir una prótesis, conoces a alguien que la necesite, o si te interesa colaborar en alguno de los tantos proyectos de Ayúdame3D, ponte en contacto con ellos y descubre cómo la impresión 3D ayuda a mejorar vidas.

YouTube video player


Puedes ayudar a esta organización a través de los siguientes links


Referencias para este blog:

Ayudame 3D. (s.f.). Ayudame 3D. Recuperado el Septiembre de 2021, de Ayudame 3D: https://ayudame3d.org/somos/

IBERDROLA. (s.f.). IBERDROLA. Recuperado el Septiembre de 2021, de IBERDROLA: https://www.iberdrola.com/compromiso-social/entrevista-guillermo-martinez-ayudame3d

Jerez, A. C. (27 de julio de 2021). ABC Economía. Recuperado el Septiembre de 2021, de ABC Economía: https://www.abc.es/economia/abci-impresion-articula-emprendimiento-proposito-202107270123_noticia.html?fbclid=IwAR2tZAUvfqp64m-gPx-Znty-W1AW6iv-NbTRTQvoG0s6kQ374MuYhe_wKZA#vca=rrss-inducido&vmc=abc-es&vso=tw&vli=noticia.foto&ref=https://www.abc.es/

protesis 3d


impresion 3d

Caso de éxito: Prótesis caninas por Hurakan Tecnocenter

impresion 3d

impresion 3d

Caso de éxito: Prótesis caninas con impresión 3D por Hurakan Tecnocenter

Esta vez estamos muy contentos de poder compartir contigo un poco la experiencia de uno de nuestros distribuidores quienes marcan la diferencia en la impresión 3D gracias al proyecto que han implementado.

Hurakan Tecnocenter, empresa dedicada a la impresión 3D y especialistas en la realización de prótesis caninas, es dirigida por los ingenieros Rogelio Guerrero y Erick Batta con quienes tuvimos la oportunidad de platicar en entrevista acerca de su negocio, experiencia y los procesos que siguen a la hora de realizar prótesis caninas, entre otros temas, así que si te interesa conocer más de este caso no dejes de seguir leyendo.

Prótesis caninas impresas en 3D | Impresión 3D

La ciudad de León Guanajuato vio nacer a Hurakan Tecnocenter  en el año 2017 y actualmente cuentan ya con otra sucursal en Pachuca, Hidalgo. A lo largo de estos 4 años se han dedicado al diseño y fabricación de piezas con materiales compuestos, hechos con impresión 3D y técnicas de laminación como fibra de carbono o de vidrio, para realizar piezas con acabados estéticos o de desempeño mecánico.

En los últimos 3 años, se han especializado en la realizar prótesis caninas, esta idea surgió debido a que ambos ingenieros comparten el cariño por los perros, y después de conocer a una fisioterapeuta canina decidieron hacer la primera prótesis para una perrita llamada Mona.

impresion 3d

Conozcamos más del proceso para realizar una prótesis canina

impresion 3d

etapa 1

1. Primeramente se debe tener un acercamiento con los dueños y con el perro. Saber las necesidades y actividades que realice para que de esta forma se pueda reconocer si es apto o no para la fabricación de una prótesis

impresion 3d

etapa 2

2. Posteriormente, se toman las medidas de todo el cuerpo del perro con ayuda de un escáner 3D para obtener una referencia a la hora de realizar la prótesis y para contar con un mapa digital de la morfología del perrito que será de gran utilidad a la hora de realizar el diseño.

impresion 3d

etapa 3

3. En este paso se analiza cómo será la prótesis dependiendo de las necesidades del canino.

impresion 3d

etapa 4

4. Una vez que ya se tiene el diseño, lo siguiente será seleccionar las piezas de manera independiente, para luego elegir el material con el que serán impresas.

impresion 3d

etapa 5

5. Al tener el prototipo listo se mide en el perro para comprobar si el funcionamiento es el adecuado y corregir alguna pieza en caso de que no esté trabajando de manera correcta.

impresion 3d

etapa 6

6. Ya que se han realizado los ajustes correspondientes, se mandan a imprimir las piezas finales, pero ahora, con materiales más resistentes y duraderos, como, por ejemplo, el filamento Fibra de Carbono – Nylon de Color Plus.

impresion 3d

“Generalmente se llevan a cabo dos prototipos en los cuales se van ajustando las medidas para la morfología del perro y una vez que se llega a un prototipado o modelo final, el último paso es la impresión 3D de las mismas piezas pero con materiales más resistentes y duraderos”.  Comentó el Ingeniero Erick Batta

Ahora bien, el tiempo en el que esté terminada una prótesis depende mucho de tres factores principales:

“Primero tenemos que evaluar si ya hemos hecho una prótesis semejante anteriormente, segundo, es importante tener en cuenta el tamaño que tiene el perro, y por último, las actividades que realice, por ejemplo, no es lo mismo hacer una prótesis para un perro Chihuahua que para un Gran Danés. Hay perros que realizan mucho ejercicio o tienen mucho movimiento, por lo cual se les debe diseñar una pieza que les permita tener libertad de movimiento. Por otro lado, existen prótesis únicamente de apoyo para poderle dar una mejor calidad de vida a los perritos, así que el tiempo oscila entre dos o tres meses y, en casos especiales el tiempo puede extenderse un poco más” comentó Batta.

Como podrás darte cuenta, hacer una prótesis canina lleva su tiempo y es un trabajo que requiere de mucha dedicación y paciencia, es importante considerar que todas las prótesis son completamente personalizadas debido a las diferentes necesidades que los perros puedan llegar a tener.

Otro de los puntos que no hay que olvidar es que los cuidados posteriores que requerirá el perro una vez que tenga su prótesis son inminentes para que se pueda llegar a tener éxito, la rehabilitación para la adaptabilidad de un agente extraño no puede dejarse pasar por alto. Si tu perro necesita una prótesis, presta mucha atención a este punto, ya que aproximadamente en los 6 meses siguientes él necesitará de toda tu ayuda, es importante que tengas un compromiso con tu amigo canino y no lo abandones en este proceso.

Ya casi para finalizar, el ingeniero Rogelio Guerrero nos comentó que es crucial saber si de verdad el perro necesita una prótesis o no: “A veces hemos tenido que rechazar solicitudes debido a que los perritos no son candidatos. Hay que entender que no todos los caninos con amputación o atrofia son aptos, se debe contar primeramente con una valoración médica donde un especialista recomiende el uso de la prótesis, de lo contrario no se pueden fabricar” aclaró.

impresion 3d

Si deseas una prótesis para tu mascota y estás en disposición de tener un compromiso con su  recuperación, no olvides contactar a Hurakan Tecnocenter para la realización de esta pieza única combinada con la tecnología de la impresión 3D. Además, el equipo cuenta con el apoyo de médicos veterinarios gracias a diferentes convenios que han hecho para poder brindarte un servicio integral y de alta calidad en todo momento.

impresion 3d

impresion 3d


Contáctalos para más información y sigue su trabajo en redes sociales:

Celular: 477 227 9933 & 477 287 3391

E-Mail: [email protected]

Instagram: @hurakantecnocenter

Facebook: fb.me/HURAKANTECNOCENTER

“Construyendo sueños en más de 14 colores” Color Plus

impresion 3d

Adhesivo 3d


Moda impresa en 3D

Moda impresa en 3D

Moda impresa en 3D, La industria de la moda a través de los años a buscado hacer sus procesos más rápidos y eficientes, algunos conservar las tradiciones y otras innovar con la tecnología. Gracias a esta última, se han podido mejorar varios procesos en la producción para la industria textil en la producción de telas y diseños más rápido al acceso de la gente. Algo no tan común y que tal vez pienses como se relacionaría es la impresión 3D. diferentes diseñadores al rededor del mundo han implementado la impresión 3D en sus diseños, crenado piezas únicas que dan un giro total a la industria.

Ganit Goldstein es una diseñadora textil y de moda con sede en Londres que se especializa en el desarrollo de moda 3D y textiles inteligentes.
El interés principal de Ganit es la intersección entre la artesanía y la tecnología , y su trabajo se centra predominantemente en ser pionera en el uso de la fabricación de impresión 3D, incorporando el escaneo 3D para producir Textiles 3D personalizados .

https://ganitgoldstein.squarespace.com/about

Danit Peleg es una diseñadora de moda y pionera en la moda impresa en 3D. En 2015, fue noticia internacional por ser la primera diseñadora del mundo en crear una colección completa utilizando impresoras domésticas 3D de escritorio para su proyecto de posgrado en la Facultad de Ingeniería y Diseño de Shenkar. En 2016, los Juegos Paralímpicos la invitaron a diseñar un vestido impreso en 3D para Amy Purdy, una bailarina con amputación de dos piernas, que actuó en la ceremonia de apertura.

El equipo 3D de Danit Peleg trabaja en estrecha colaboración con investigadores de materiales y empresas de impresión para hacer realidad el sueño de hacer que la impresión 3D de moda sea accesible para todos. El equipo también tiene como objetivo revolucionar la industria de la moda al reducir drásticamente el desperdicio y la contaminación. Esto significa interrumpir las cadenas de suministro de la moda tradicional y, en última instancia, crear una alternativa más sostenible y esperanzadora para el futuro.

Danit Peleg también es un consultor que asesora a las marcas de moda sobre cómo incorporar esta fascinante nueva tecnología en su trabajo. Ella cree profundamente que el generoso intercambio de ideas y conocimientos en la moda impulsa el crecimiento positivo y el cambio en la industria. Sus artículos de moda impresos en 3D son muy codiciados y se han vendido y prestado a iconos de la moda, escuelas, museos y eventos de todo el mundo.

Danit también es oradora de TED y ha aparecido en publicaciones de renombre mundial como Vogue, The New York Times y Women’s Wear Daily. En 2018, Forbes la reconoció como una de las mejores mujeres tecnológicas de Europa. En 2019, la BBC la nombró como una de las 100 mujeres más inspiradoras e influyentes del mundo. Danit cree que la impresión 3D abre nuevas y fascinantes oportunidades en la moda y quiere inspirar a las futuras generaciones de diseñadores a soñar en grande. Tiene su sede en Tel Aviv, Israel.

Moda impresa en 3D


Reconstrucción de rostro

Reconstrucción de rostro gracias a la impresión 3D

Reconstrucción de rostro gracias a la impresión 3D

La reconstrucción de rostro gracias a la impresion 3D ya es una realidad gracias a la tecnología 4.0 que ha llegado a revolucionar la vida de muchas personas, en este caso por ejemplo hablaremos de la muestra sobre impresión 3D que lleva el nombre de “Impresoras 3D: El futuro” la cual podemos encontrar en el museo de ciencias de Londres y que ha servido como soporte para cambiar la vida de varias personas, una de ellas es la del británico Stephen Power, de 29 años, quien hace algún tiempo sufrió un accidente en motocicleta que lo dejó con el rostro completamente destruido.

Después del accidente, Power se vio envuelto en una clase de contratiempos y su autoestima se vio gravemente afectada al grado de salir a la calle cubriendo completamente su rostro.

Sin embargo, los médicos del Hospital Morriston, en la ciudad deSwansea en Gales, le brindaron una excelente alternativa que cambió para siempre su vida; reconstruir su rostro gracias a la impresión 3D.

La intervención quirúrgica duró aproximadamente 8 horas en las cuales se tuvieron que romper los pómulos de Stephen antes de insertar las placas, que fueron sujetadas con ayuda de implantes de titanio impresas en Bélgica.

 El inglés no ha sido el único que se ha sometido a un procedimiento de este tiempo, cada vez son más las personas que pueden recuperar sus vidas y apariencia después de sufrir algún accidente, gracias a la impresión 3D,

Reconstrucción de rostro

En algunas ocasiones es necesario imprimir las prótesis después de ser escaneadas  para mostrarles a los pacientes cuál será el resultado del procedimiento, para esto se hace uso de diferentes tipos de filamentos como el PLA, ABS y algunos otros materiales que son demasiado accesibles y cumplen las funcionas de prototipado.

Ahora imagina qué otras cosas se podrían realizar con ayuda de la impresión 3D y todas las vidas que podrían ser mejoradas. No olvides que la calidad de tus impresiones dependen de los filamentos que uses. Elige siempre la mejor opción Color Plus.

VER FILAMENTOS 3D 

Reconstrucción de rostro

Reconstrucción de rostro


Ciencia refutada por la impresión 3D

Ciencia refutada por la impresión 3D

Ciencia refutada por la impresión 3D

La Ciencia refutada por la impresión 3D. Una noticia que esta dando la vuelta el mundo gracias a la impresión 3D. Una teoría que no había sido comprobada durante más de un siglo hoy por fin es probada, pero al parecer refutada. Esta teoría pertenece al físico británico William Thomson, más conocido como Lord Kelvin.

Lord Kelvin es conocido por sus grandes aportes a la física moderna en el siglo  XIX, con sus importantes trabajos en el campo de la termodinámica y la electricidad, gracias a sus profundos conocimientos de análisis matemático.

Uno de sus aportes más famosos dentro de la termodinámica es el desarrollo la escala de temperatura Kelvin.

Dentro de sus muchos aportes, desarrolló la teoría de los Helicoides Isotrópicos, un objeto que, diseñado y creado de la manera propicia, debería de poder verse igual desde cualquier ángulo y que giraría de manera natural al sumergirse en un líquido.

Según sus cálculos, el helicoide isotrópico debería ser un objeto esférico con una especie de salientes o aletas en su superficie, proyectadas en ángulo de 45 o 90 grados según el caso.

La hipótesis que Lord Kelvin propuso en 1871 era extremadamente difícil de comprobar, porque para crear un cuerpo tan simétrico como un helicoide isotrópico del que habló hacían falta herramientas de alta precisión, y su propuesta se plasmó en los libros de hidrodinámica, considerada correcta a nivel teórico.

Ciencia refutada por la impresión 3D

Ciencia refutada por la impresión 3D

Sin embargo, 150 años después las tecnologías han avanzado, y un equipo de científicos de EE.UU., Suecia y Francia han refutado la famosa hipótesis del físico británico. los científicos han podido llevar a cabo ese experimento imprimiendo en 3D cinco cuerpos distintos, de poco más de un centímetro, que corresponden con los criterios de Lord Kelvin. Su trabajo ha sido publicado en la revista Physical Review Fluids.

Los diseños variaban en tamaño y forma de las aletas, probando en cada caso a sumergirlo en aceite de silicona y ver si en algún caso había giros espontáneos. Según sus pruebas, ningún diseño de helicoide isotrópico cumple con este punto, cayendo al fondo del tanque y comprobando con cálculos analíticos que la rotación era exactamente cero, aunque no en todos los casos.

A pesar de los resultados, no es refutada completamente la teoría. Esto nos motiva a seguir experimentando en la búsqueda de los Helicoides Isotrópicos de Lord Kelvin. Gracias a la impresión 3D pudimos comprobar dichos resultados y nos facilita el conocimiento del campo de la física. Que este resultado nos sea una motivación para utilizar la impresión 3D más allá de lo que comúnmente lo hacemos.

Bibliografía

Refutan con la impresión 3D Una hipótesis DE Lord KELVIN que lleva 150 años en LOS LIBROS DE hidrodinámica. RT en Español. (2021, July 21). https://actualidad.rt.com/actualidad/398395-refutan-impresion-3d-hipotesis-lord-kelvin.

Darci Collins, R. J. (13 de julio de 2021). APS Physics. Recuperado el 27 de julio de 2021, de https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.6.074302


impresión 3d en juegos olímpicos

Impresión 3D en los Juegos Olímpicos

impresión 3d en juegos olímpicos

impresión 3d en juegos olímpicos. Los Juegos Olímpicos o las olimpiadas son un conjunto de eventos deportivos multidisciplinarios en los que participan atletas de diversas partes del mundo. Entre los diversos deportes se encuentra la Natación, Tiro con Arco, ciclismo, gimnasia artística, Tae Kwon Do, Futbol, entre otros. Este evento se lleva a cabo cada 4 años.

Este 2021 se llevarán a cabo los juegos olímpicos en Tokio Japón, iniciando el día 23 de julio de 2021. Con un año de separación a su fecha inicial debido a la contingencia sanitaria vivida durante e año 2020 hasta la fecha. Gracias a esto, se han tomado diferentes medidas para que pueda ser llevado a cabo este evento con las acciones pertinentes.

Algunas de las medidas adaptadas han influido en mayor medida con la impresión 3D, por lo que en este blog te contaremos cuales son dichas medidas que la sede de este año está implementando y como se ha visto el impacto de la impresión 3D en este tipo de eventos.

El gobierno japonés impuso la prohibición de la entrada de visitantes extranjeros en los juegos olímpicos para evitar así la propagación del Covid-19 y así prevenir una nueva oleada de este virus en Japón. Para los patrocinadores se tomó la decisión de que podrán ir de forma presencial con las medidas pertinentes.

En cuanto a los atletas, se realizaran pruebas y se harán los requisitos de distanciamiento social en las sedes y las villas olímpicas y paralímpicas.

Para más información relacionada al evento da clic aquí

Podios

Una alternativa de sostenibilidad, en estos juegos Olímpicos cada uno de los podios fue elaborado con plásticos reciclados que pueden ser nuevamente reciclables una vez concluidos los juegos. Además, esta opción fue elegida para ser impresa en 3D, lo que conserva sus materias primas y ahorra en energía.

Los japoneses contribuyeron con toneladas de plásticos como detergentes de ropa y envases de shampoo en cajas especiales de recolección distribuidas en más de 2,000 puntos en todo el país. También incluye plásticos recuperados del océano.

El diseñador de podios Tokolo Asao dice que los emblemas de Tokio 2020 se basan en la geometría de los diamantes, que modificó para crear el patrón en los podios. Los emblemas oficiales forman un polígono de 12 lados, llamado dodecágono, que se parece un poco a un círculo. El diseño del podio se creó reconfigurando el dodecágono en forma de cubo. De hecho, cada podio se fabrica a partir de cubos impresos en 3D separados que Asao espera que se guarden como recuerdo de los juegos. “La filosofía subyacente era crear algo que quisiéramos conservar en lugar de tirarlo a la basura”, dijo.

impresión 3d en los juegos olímpicos

impresión 3d en los juegos olímpicos

Tenis Deportivos

Para los Juegos Olímpicos de Río 2016, Nike lanzó unas zapatillas que Shelly-Ann Fraser-Pryce usó en su competencia. Shane Kohatsu, director de diseño de Nike, dice que la zapatilla brindará a los corredores la cantidad adecuada de apoyo mientras los ayuda a correr más rápido y a resistir toda la potencia ejercida durante una carrera de 100 metros.

Los Zoom Superfly Elite, que fueron impresos en 3D, jugaron un papel muy importante que más de 100 atletas fueron patrocinados por Nike y utilizaron dichas zapatillas.

Trineos

La empresa de impresión 3D Stratasys en conjunto con equipo de US Luge, trabajaron para crear prototipos de trineo para los Juegos Olímpicos de Invierno en Corea en 2018.

“Los Juegos Olímpicos representan el pináculo del logro humano y estamos entusiasmados de ver cómo la fabricación aditiva puede superar los límites de lo que es posible y, con suerte, romper algunos récords en el camino” David Dahl, ingeniero de aplicaciones de Stratasys.

impresión 3d en los juegos olímpicos

Filamento pla Black Panther 1.75mm

impresión 3d en juegos olímpicos


Caso de Éxito: Electronics 3D

Caso de Éxito: Electronics 3D

Caso de Éxito: Electronics 3D

Caso de Éxito: Electronics 3D “Atrévete a darte cuenta de la calidad de un filamento de alta gama como los de Color Plus” con esas palabras finalizaba la entrevista que tuvimos con Raquel Ojeda, Ingeniera en Mecatrónica y directora general de Electronics 3D, empresa dedicada a la manufactura aditiva con sede en la ciudad de Puebla.

Caso de Éxito: Electronics 3D

En Electronics 3D se imprimen piezas de grado industrial, médicas y hasta alimenticias, por lo cual han visto en los Filamentos Color Plus una gran oportunidad para satisfacer las necesidades de todos sus clientes debido a la gran variedad de materiales con los que contamos en la marca. Raquel Ojeda comenta que llevan usando Color Plus desde hace 8 meses, lo que ha permitido  “brindar cotizaciones, variedad de materiales y piezas de calidad Premium a nuestros clientes acercándonos cada vez más al mercado industrial” comentó la directora de Electronics 3D.

Uno de los filamentos que más utilizan y que se ha convertido en su favorito es el Fibra de Carbono Nylon debido la gran resistencia al impacto con la que cuenta.

Si te gustaría conocer más de su trabajo puedes contactarlos por medio de sus redes sociales

IG: @Electronics_3d           FB: Electronics 3D

Caso de Éxito: Electronics 3D

“Construyendo sueños en más de 14 colores’’ Color Plus

Conoce más de nuestros casos de éxito aquí 

Síguenos en Nuestras Redes Sociales


Filamento PET-G

Filamento PET-G

El PET-G al igual que el PLA  se considera como un material seguro para alimentos en casi todos los países. Pero es mejor prevenir que curar, por lo que estaría bien que verificaras las especificaciones proporcionadas por el fabricante del filamento.

  • El PLA es más fácil de extruir y manejar que el Filamento PET-G. Además, el PLA también es más indulgente cuando se trata de errores de impresión 3D.
  • Ambos materiales presentan poca contracción durante el enfriamiento.
  • Ambos filamentos se consideran no tóxicos para los alimentos.
  • Además, ambos son fáciles de usar, pero el filamento PETG es más duradero, más resistente y puede soportar impactos más fuertes.
  • El PLA es menos propenso a sufrir arañazos y daños en la superficie.
  • El filamento PETG es generalmente más caro que el PLA.
  • El filamento PLA ofrece más variaciones.


costos de impresion

Tips para reducir costos de impresión parte 2

Costos de impresion

costos de impresion. Hace unos blogs comentábamos la primera parte en que puedes reducir costos de impresion 3D para tu empresa o a nivel personal. En esta ocasión te presentamos la segunda parte para que puedas encontrar más formas de ahorrar con este blog.

Seleccione los materiales adecuados

Puede parecer algo obvio, pero es algo esencial para tomar en cuenta. Dentro del mercado existe varios materiales que pueden ser de nuestro interés, cada uno con un precio diferente. Es importante seleccionar cual material puede ser útil de acuerdo a las características que este nos puede proporcionar. Dentro de nuestros productos podrás encontrar una ficha técnica de referencia en la que puedes evaluar tanto el precio como sus características.

costos de impresion

Utilice el modo económico

Otra forma en la que se puede disminuir el costo tiene que ver con la velocidad de entrega. si aun no cuentas con una impresora 3D puedes encontrar diversos servicios de impresión en donde puedes mandar imprimir tus piezas.  Algunos de estos servicios de impresión pueden tener la opción “modo económico” en la cual ofrecen descuentos en las que la impresión tarda un poco más de lo habitual.

costos de impresion

Evite las estructuras de soporte y las balsas

El costo de la impresión 3D a través de materiales podría ahorrarse eliminando o reduciendo las estructuras de soporte y las balsas. De manera similar al porcentaje de propina de relleno, siempre habrá proyectos que requieran estructuras de soporte. Pero muchas veces, simplemente reorientar su objeto en el software de corte puede ayudar a eliminar los desechos plásticos innecesarios de su impresión. La eliminación de las estructuras de soporte no solo puede reducir el costo de la impresion 3D y el tiempo total invertido, sino que también ayudará a producir impresiones más limpias. Cualquiera con experiencia en impresión 3D de escritorio sabe lo doloroso que puede ser quitar las estructuras de soporte a veces, y podría dejarlo con una calidad de impresión mediocre y superficies rugosas.

costos de impresion

Aprovecha las formas complejas

Es posible que haya oído hablar de las principales aerolíneas que utilizan la impresión 3D para reducir el peso de los aviones y ahorrar miles de millones en costos de combustible cada año. Esto se logra mediante técnicas de diseño orgánico y algorítmico como la optimización de topología. Básicamente, se trata de la aplicación de fenómenos biológicos al diseño y la ingeniería. Cuando se usa con la impresión 3D, este método también puede ayudarlo a ahorrar en el costo de la impresión 3D.

En general, una de las mayores ventajas de la fabricación aditiva sobre los métodos tradicionales de fabricación es la capacidad de reproducir formas y estructuras complejas que se encuentran en la naturaleza, como los panales. Con la impresión 3D, es fácil diseñar formas 3D ajustadas que se han recortado a la cantidad mínima de material requerido, pero que aún pueden ser más fuertes y más livianas que las piezas fabricadas tradicionalmente. Usando conceptos biológicos, puede reducir el costo de la impresión 3D de material.

Servicio de impresión 3D en línea para costos de impresion

Si eres nuevo en la impresión 3D y no has decidido qué tecnología se adapta mejor a tus necesidades, debería analizar detenidamente los servicios de impresión 3D en línea para una introducción adecuada. De esa manera, puede experimentar con una amplia gama de tecnologías, impresoras 3D y materiales diferentes sin temor a gastar grandes sumas de dinero en algo que puede no ser adecuado para usted. Ciertos materiales, especialmente el metal, solo se pueden imprimir en impresoras 3D industriales extremadamente caras. Cuando investigue adecuadamente sus opciones, probablemente encontrará un servicio que le ayudará a reducir el costo de la impresión 3D.

En casos como este, simplemente no hay forma de evitar un servicio de impresión 3D en línea sin aumentar el costo de la impresion 3D a niveles insanos. Los servicios de impresión 3D en línea son una alternativa conveniente para quienes buscan materiales avanzados o no están dispuestos a invertir en su propia impresora 3D. Además, no tiene que preocuparse por las impresiones fallidas cuando sus archivos 3D son manipulados e impresos a la perfección por profesionales capacitados.

Imagen de Reducir el costo de la impresión 3D: utilice un servicio de impresión 3D en línea


macetas impresas en 3d

Ideas de impresión para tus plantas

macetas impresas en 3d

macetas impresas en 3d. Como hemos visto en los últimos blogs, la impresión 3D a llegado a una gran extensión de industrias y áreas que hace un tiempo podríamos solo imaginar. En estos días, a demás de la industria, la decoración de nuestro espacio también juega un papel importante la impresión 3D.

El día de hoy queremos compartirte una serie de impresiones que puedes hacer desde casa para decoración y en especial para los amantes de las plantas.

Existe la gran duda si la impresión 3D es buena para el medio ambiente y para nuestras plantas en casa. Puedes estar seguro de que los materiales a base de PLA son una buena alternativa para tus impresiones, ya que este material es biodegradable.

filamento-pla-brown-bear-1-75mm-filamento-filamento3d-filamentopla-plabrown-pla1.75mm

Maceta Hexagonal

El estilo de estas macetas es completamente geométrico, su forma simétrica y apilable lo hace muy útil para sostener plantas pequeñas y suculentas sin eclipsar una de otra. Esta mismo modelo tiene un sistema de drenaje en la parte inferior.

Descarga aquí

Macetas de riego automático

estas macetas están integradas con un sistema que las riega automáticamente, ideal para las personas que olvidan regar sus plantas constantemente. Solo deberás recordar llenar el recipiente de vez en cuando.

Descarga aquí

TIE Fighter

Para los amantes de Star Wars. Esta maceta puede ser un buen regalo para todo aquel amante de Star Wars.

Descarga aquí


casas impresas en 3d

Casas impresas en 3D

Casas Impresas en 3D

Casas impresas en 3D. Si alguien te dijera que su casa fue impresa en 3D probablemente lo tacharías de loco. Pero No está nada lejos de ser real. La impresión 3D ha abarcado un nicho muy amplio y la construcción no queda atrás. No solo en la maquetación de la arquitectura, sino a la hora de construir las viviendas.

A continuación, te presentamos una nueva forma de implementar la impresión 3D. A pesar de que no funde filamentos como las demás impresoras, usa la misma técnica FDM como base. Usa el mismo principio de fundido capa por capa.

En términos simples, las casas impresas en 3D se construyen depositando material capa por capa. Una mezcla de concreto pastoso se extruye a través de una boquilla que está guiada por un enorme pórtico, creando paredes desde el suelo hasta una capa a la vez.

Construcción más rápida en las casas impresas en 3D

La impresión 3D de una casa es significativamente más rápida en comparación con los métodos de construcción tradicionales. Si bien el marco de tiempo real depende en gran medida del tamaño del proyecto, en la mayoría de los casos, la construcción toma solo unos días.

Mano de obra reducida

Los sitios de construcción de impresión 3D requieren menos trabajadores que los sitios tradicionales, ya que el equipo de impresión hace la mayor parte del trabajo.

En términos generales, la construcción tradicional requiere muchos pasos, incluido un equipo completo de nueve a cinco descargando, transportando y mezclando materiales antes de colocar las estructuras. Por otro lado, una vez configurada, una impresora 3D de concreto solo requiere un puñado de personas para monitorear y controlar su proceso de construcción.

Costos de obra más bajos

Las casas impresas en 3D son supuestamente más baratas de construir, pero esto es algo discutible, ya que las impresoras 3D de construcción masiva son equipos costosos y aún presentan muchas limitaciones. Pero limitémonos a hechos y números.

Mayor eficiencia de material

El proceso de las casas de impresión 3D es más eficiente en términos de uso de energía y materiales en comparación con la construcción tradicional.

Las casas de impresión 3D generan menos desperdicio ya que usan solo la cantidad requerida de material para construir estructuras: no hay recortes de materiales de corte o tallado. Además, como los materiales de materia prima a base de hormigón no tienen forma, cualquier sobrante puede y debe utilizarse en el siguiente edificio.

YouTube video player


Filamento Madera

Filamento Madera

Filamento Madera, La impresión 3D de madera nació alrededor de 2012. Los primeros filamentos fueron filamentos a base de PLA con aserrín integrado. Sin embargo, los primeros experimentos demostraron que el aserrín no era la mejor solución ni para la impresión 3D de madera ni para los filamentos de madera.

En estos días, el filamento de madera todavía se basa en PLA, pero la madera está integrada en forma de fibras de madera. ¡También han surgido muchos tipos diferentes de madera! Ahora puede elegir entre abedul, coco, bambú, madera, cedro y muchos otros. Normalmente, los filamentos de madera contienen un 70% de PLA y un 30% de fibras de madera, pero todo realmente depende del fabricante del filamento.

Cómo imprimir el filamento Madera

En la boquilla

Al igual que con el PLA normal, es mejor precalentar la boquilla entre 170 y 220 ºC. Naturalmente, la temperatura exacta dependerá del filamento.

Una cosa interesante con el filamento de madera es que puedes experimentar con diferentes temperaturas para producir diferentes colores y acabados. Eso es porque una extrusora a temperaturas más altas quemará la fibra de madera, creando tonos más oscuros.

Solo tenga en cuenta que la madera es altamente inflamable. Si el extremo caliente está demasiado caliente y la boquilla no extruye el filamento lo suficientemente rápido, su impresión podría dañarse o incluso incendiarse.

Para evitar obstrucciones, se recomienda equipar su impresora con una boquilla más grande que la estándar de 0,4 mm. Además, es especialmente importante con el filamento de madera mantener limpia la boquilla.

En la Placa de construcción

Para crear impresiones de calidad con filamento de madera, es una buena idea usar una cama con calefacción, pero no es necesario. Si tiene uno, precaliéntelo entre 50 y 70 ºC.

Lo que es necesario es proporcionar una superficie adhesiva, ya sea con cinta de pintor, barra de pegamento, una placa de vidrio o láminas de PEI. De lo contrario, es muy común que las piezas se deslicen durante la impresión.


Fibra de Carbono

Fibra de Carbono

Fibra de Carbono

Fibra de Carbono. Resistente como el metal, ligero como el plástico y alta resistencia al calor, los productos químicos y la corrosión; son algunas características de este filamento. Una promesa de la impresión 3D para diferentes industrias.

Aunque la fibra de carbono ha sido un material de fabricación desde la década de 1960, como material de impresión 3D, es relativamente nuevo.

La fibra de carbono mejora la resistencia y la estabilidad de las piezas impresas en 3D al mismo tiempo que reduce su peso total. Esto lo convierte en un material compuesto ideal para una amplia gama de aplicaciones de impresión 3D, desde prototipos funcionales hasta piezas de uso final en la industria aeroespacial, automotriz y deportiva.

Fibra de Carbono

Algunas de las aplicaciones de este filamento en las industrias van desde la fabricación de prótesis, bicicletas, piezas finales y prototipos de impresión para la industria automotriz. Este filamento propone un ahorro de casi el 70% en los proyectos que antes eran fabricados de aluminio.

Ver en Tienda

Fibra de Carbono

Fibra de Carbono

PROS

  • Alternativa ligera al metal
  • Las piezas tienen resistencia y rigidez industrial
  • Estabilidad dimensional excepcional
  • Excelente tanto para piezas de uso final como para prototipos funcionales
  • Resistencia a la corrosión, calor, aceite y grasa.

CONTRAS

  • Los filamentos compuestos de fibra de carbono son más caros que la mayoría de los filamentos
  • El material es más caro que algunos metales.
  • Un material extremadamente abrasivo que puede desgastar y obstruir algunas boquillas de la impresora.
  • Más frágil que otros plásticos
  • Las impresoras suelen ser más caras que otras tecnologías.

Una de las aplicaciones más notables es la fabricación de prótesis realizadas por Livity Technologies realizando pies prostéticos para jamaiquinos que no pudieron obtener prótesis por falta de fondos y materiales.

“Los amputados siempre se sorprenden al escuchar que se trata de un pie impreso en 3D que tiene flexibilidad, es robusto. Como ingeniero y como ser humano, disfruto ese proceso, poder brindar tecnología o herramientas a alguien que enriquecerá sus vidas “.

Patrice Johnson, CTO de Livity Technologies


caso de exito technoprint

caso de exito technoprint

caso de exito technoprint

caso de exito technoprint. Techno Print 3D es una compañía dedicada a la manufactura aditiva con varios años de experiencia en el campo de la impresión 3D y que se  encuentra ubicada en Ecatepec estado de México.

 

Tuvimos el gusto de poder entrevistar a Abraham Valdéz director de Techno Print quien nos contó un poco de su experiencia trabajando con los filamentos Premium Color Plus como producto principal de sus impresiones.

Uno de los materiales primordiales que usan para la creación de sus productos son el ABS y el PLA, debido a que se adaptan fácilmente a los diferentes tipos de impresoras, desde las de escritorio hasta las más industriales. La gran calidad de impresión, el hecho de que casi no se  genere warping y tampoco se quiebre,  son algunas de las razones extra por las cuales prefieren usar Color Plus por encima de otras marcas.

 

Así mismo, hacen uso de filamentos especiales como el ASA, fibra de carbono y TPU.

 

Abraham nos comenta que en ocasiones parece un poco dispendioso invertir en un buen filamento como los de Color Plus, sin embargo las ventajas que se ofrecen van más allá de lo que puede llegar a costar, ya que el ahorro en otros materiales de soporte o de fijado se compensa con el precio, además de que el desperdicio de material es mucho menor en comparación con otros filamentos de bajo coso.

 

Ya casi para concluir, Abraham Valdez nos hizo una invitación para probar los filamentos para impresión 3d de Color Plus, resaltando su gran calidad e innumerables beneficios.

 

Si quieres conocer más de su trabajo puedes visitar sus redes sociales @Techno.print3d en Facebook e Instagram.

“Construyendo sueños en más de 14 colores’’ Color Plus

Conoce más de nuestros casos de éxito aquí 

Caso de éxito Color Plus | Filamentos ASA, TUP


filamento tpu tips

ColorTips: imprime en TPU

filamento tpu tips

filamento tpu tips. Como ya hemos hablado, el filamento TPU es un material flexible y resistente debido a que es un elastómero termoplástico cuyas cualidades le permite crear objetos flexibles con una apariencia exterior de alta calidad, increíbles para todo uso.

El día de hoy te presentamos unos cuantos tips para que puedas imprimir en este filamento.

Imprimir lento

El filamento flexible se debe imprimir muy lento, ya que si se empuja a gran velocidad genera mucha tensión sobre el filamento y puede hacer que falle tu trabajo. En extrusores normales se recomienda empezar con velocidades de 25mm/s, e ir aumentando de poco en poco hasta encontrar el punto donde genera fallas. En caso de que no puedas ir lento, intenta con extrusores especialmente diseñados para filamentos flexibles.

Camino restringido

Hay que tener en cuenta que los plásticos flexibles tomarán el camino que sea más fácil de seguir, por lo que se pueden salir del extrusor si no se tiene cuidado. Para evitar eso se recomienda que el camino del filamento sea restringido, sin que tenga otro lugar al cual irse. Normalmente el punto que más genera problemas es el espacio que hay entre el engrane del motor y la garganta o conector del PTFE.

Extrusor directo en lugar de Bowden

El tercer punto en este artículo sobre como imprimir con filamento flexible es sobre el tipo de extrusor. Los extrusores directos tienen un menor camino por recorrer hacia la boquilla, lo que hace que el filamento pueda ser empujado de forma más sencilla. Por otro lado, la configuración Bowden significa empujar plástico a través de un tubo, el cual tiene un diámetro interno más grande que el filamento, permitiendo que tenga cierto “juego” dentro del PTFE, lo cual complica el empuje del material flexible. Sin embargo, esto no significa que no puedas usar estos materiales en un sistema Bowden, hay ciertas cosas que puedes cambiar para que sea posible, una de ellas es usar un PTFE con menor tolerancia interna, para que el camino sea más restringido.

Sin retracción

Esta opción nos permite obtener impresiones más limpias, ya que elimina el stringing. Sin embargo, con los plásticos flexibles es preferible desactivar por completo esta opción para evitar presiones sobre el material y que este genere errores. ¿Cómo puedes hacer que tu impresión salga más limpia cuando se tiene desactivada la retracción? Puedes usar la opción de “Combing”. En Cura se encuentra bajo el apartado de velocidad. Lo que hace esta función es que al momento de viajar de un punto a otro en tu pieza lo intenta hacer sobre una parte ya impresa. De este modo los hilitos de filamento quedan dentro de tu impresión en lugar de por fuera. La desventaja que presenta el Combing es que hace que tardes un poco más en acabar la figura, ya que viaja más tiempo tratando de evitar pasar por una parte no impresa.


Filamento Conductivo en el Diseño Industrial

Filamento Conductivo en el Diseño Industrial

Filamento Conductivo en el Diseño Industrial

Filamento Conductivo en el Diseño Industrial. El filamento conductivo es un tipo de material emergente que es ideal para pequeños proyectos electrónicos de bricolaje o circuitos pequeños. Este filamento puede fluir la electricidad a través de él, de ahí la utilidad del filamento en proyectos como llaveros , guantes LED e incluso sensores de nivelación automática de la cama.

El día de hoy te presentamos una de las aplicaciones que puedes tener con este filamento. VER FILAMENTOS

La diseñadora industrial israelí Yael Akirav imprime en 3D material conductivo sobre textiles para crear obras de origami iluminadas. Estos dispositivos de luz pueden colapsarse o expandirse debido a sus superficies flexibles, lo que les permite mostrarse abiertos e iluminados o plegados en una posición cerrada. Este movimiento expansivo estira el filamento conductivo y también funciona casi como un atenuador. Un tirón lento enciende la luz gradualmente y luego la apaga cuando se comprime de nuevo a su posición original.

Akirav se graduó recientemente del Departamento de Diseño Industrial de la Academia de Arte y Diseño Bezalel en Jerusalén, donde estuvo expuesta por primera vez a las tecnologías de impresión 3D. Puedes ver más diseños textiles creados con elementos conductivos impresos en 3D en su sitio web e Instagram.

YouTube video player


impresiones que te pueden servir

impresiones que te pueden servir

impresiones que te pueden servir

impresiones que te pueden servir. Muchas de las impresoras 3D cargan archivos de impresión en formato STL. En ocasiones estos archivos los podemos crear nosotros en un software de modelado o los podemos buscar en páginas web con piezas más complejas o divertidas. Algunos de estos archivos son de paga entre más complejo sean. Para aquellas personas que están en el mundo de la impresión 3D les traemos una recopilación de archivos STL gratuitos para que pruebes en tu impresora y tus filamentos ColorPlus.

impresiones que te pueden servir: Soporte de teléfono

De entre varios diseños, te mostramos este soporte de teléfonos ya que se puede imprimir en menos de una hora e incluso se puede plegar. Tiene ocho posiciones diferentes y puedes usarlo en tu teléfono o tableta.

Ver Archivo

te recomendamos imprimirlo en:

ABS BLACK COSMIC

impresiones que te pueden servir

Sujeción para filamento con tornillo

de las impresiones que te puede servir, esta herramienta nos ayuda a mantener nuestro filamento sujeto y buen enrollado. Una buena alternativa de organización práctica para nuestro día a día. este diseño lo imprimes en cuestión de minutos.

Ver Archivo

te recomendamos imprimirlo en:

ABS RED LAVA

impresiones que te pueden servir

Dispensador de pasta de Baby Yoda

En los principales repositorios de archivos para impresión 3D, continuamente aparecen dispensadores de pasta de dientes con formas divertidas. Lo que sí es seguro es que despertará la admiración de fans de todas las edades, deseosos de dispensar la pasta a través de la boca de Baby Yoda, al más puro estilo mandaloriano.

Ver Archivo

te recomendamos imprimirlo en:

PLA GREEN CROCODILE

Clip para cable Ethernet

Otra de las impresiones que te puede ser útil que se puede imprimir en minutos es un clip de cable Ethernet. Este cable lo puedes ocupar si tienes problemas con tu conexión local. Es fácil de montar y muy eficiente.

Ver Archivo

te recomendamos imprimirlo en:

PLA FLEXIBLE NEGRO

impresiones que te pueden servir


asa filamento

Filamento ASA

asa filamento

asa filamento. El Filamento ASA es un gran sustituto del ABS, ya que presenta propiedades muy similares y se imprime de manera algo más fácil. Es un polímetro amorfo termoplástico cuyas siglas significan ‘Acrilonitrilo Estireno Acrilato’ y que se engloba dentro de los denominados ‘materiales de ingeniería’, dentro de la impresión 3D.

El filamento ASA tiene varias características, de las que podemos destacar las siguientes:

  • Es robusto mecánicamente, perfecto para aplicaciones con necesidad de resistencia
  • Resistente a los rayos ultravioletas (o U.V.), por eso no amarillea
  • Resistente al agua, para aplicaciones subacuáticas o acoples en bombas
  • Genera un buen acabado de piezas sin deformaciones
  • Tiene una gran estabilidad dimensional, por lo que no presenta warping y las piezas tienen buenas tolerancias
  • Tiene una gran resistencia a químicos y a todo tipo de tratamientos químicos
  • Mejor resistencia térmica que el ABS, se deforma a temperaturas más elevadas (hasta 95º)
  • Superficies con acabado mate, similar al del ABS, que algunos prefieren para sus piezas impresas

Es ideal para la industria automotriz, la creación de prototipos y las aplicaciones al aire libre, ya que tiene una resistencia química excepcional, así como una gran estabilidad dimensional. Al ser termoplástico, puede ser calentado hasta su punto de fusión, enfriado y recalentado de nuevo sin una degradación significativa.

Propiedades del ASA Filamento

Densidad: 1,07 [g/cm3]
Tolerancia: ±0,05[mm]
Alargamiento a la rotura: 35%
Resistencia a la flexión: 660 [kg/cm2]
Temperatura de fusión ASA: 250-260[ºC]
Máxima temperatura de impresión: 80-90[mm/s]
Solubilidad en: metil-acetona, dicloro-etileno y ciclohexanona.


caso de exito

Caso de Exito: Yarvick - Cad Surfer

Caso de exito Color Plus

Caso de exito. Yarvick Loera propietario de Cad Surfer (negocio dedicado a la impresión 3D en Aguascalientes, México) nos contó en entrevista un poco de su experiencia trabajando con los filamentos Premium de Color Plus.

En Cad Surfer llevan usando nuestra marca desde hace más de 3 años, eligiéndola por encima de otras debido a que “manejan un material muy eficiente para imprimir y que aporta gran cantidad de beneficios en nuestras máquinas y equipos” mencionó el experto en impresión 3D Yarvick Loera. Otra de las cualidades que resaltó fue la atención y rápido servicio de parte de nuestros asesores comerciales en cuanto a pedidos e información.

Yarvick nos compartió que uno de sus filamentos favoritos es el Premium ABS Blanco ya que no ha encontrado en el mercado ningún otro que se le asemeje debido a que su claridad es inigualable, brindándoles grandes facilidades a la hora de lijarlo y/o pintarlo, lo que les da un acabado casi perfecto en las líneas de impresión.

Nylon con fibra de carbono y fibra de vidrio también se han vuelto unos de los materiales más utilizados en Cad Surfer, debido a la dureza y resistencia que manejan.

Algunos de los beneficios que se obtuvieron en el negocio al usar los Filamentos Premium de Color Plus son: la constante calidad al momento de imprimir las piezas, que las boquillas de las impresoras se tapen menos debido a la calidad de los filamentos, permitiéndoles imprimir a una temperatura constante sin tener que hacer muchas modificaciones.

Filamentos para impresión 3d | Color Plus | CAD SURFER | Caso de éxito

“Estos materiales valen cada peso invertido, imprimimos menos piezas que hace algunos años en donde fallaban muchas piezas y teníamos que gastar mucho en material de stock” mencionó Yarvick.

Finalizando con la entrevista, Loera invita los impresores a probar los Filamentos Premium Color Plus “Es una buena alternativa y por el precio que manejan es un material eficiente y realmente  muy económico si lo comparamos con todos los beneficios que aporta”

Te invitamos a conocer más de su trabajo en su cuenta de Instagram @CadSurfer.

“Construyendo sueños en más de 14 colores’’ Color Plus

Conoce más de nuestros casos de éxito aquí 


costos de impresion 3d

Tips para reducir costos de impresión parte 1

costos de impresion 3d

costos de impresion 3d. Tanto para principiantes como expertos, es importante poder economizar costos tanto en impresión como en los insumos que necesitamos. Aunque existen ocasiones en las que el economizar en material no resulta tan buena idea. El día de hoy te presentamos algunos tips para que reducir tus costos de impresión.

Optimizar la configuración de impresión

Si estás buscando ahorrar un poco de dinero y al mismo tiempo lograr una mayor calidad de impresión, te recomendamos verificar de estar siempre usando la configuración de impresión óptima. Al preparar su impresión en el software de corte, es importante ingresar la mejor configuración posible para su impresora y el filamento seleccionado.

La configuración correcta no solo garantiza impresiones de mayor calidad, sino que también reduce la posibilidad de fallas de impresión, boquillas obstruidas y otros errores frustrantes que harán que reinicie las impresiones y busque en su billetera. Al asegurarse de tener la configuración de impresión correcta, puede preservar el material, reduciendo así el costo de la impresión 3D.

costos de impresion 3d

Ahueca tu modelo 3D

Otra forma de ahorrar material, en caso de no ser necesario, es ahuecar el interior de tus diseños. Al hacer esto, puedes ahorrar material (y por lo tanto reducir costos de impresión 3D). Pero ten cuidado de no dejar muy delgado el borde, porque el material de impresión que utilice requerirá un grosor de pared mínimo para mantener la integridad estructural. Este valor puede oscilar entre 3 mm y 1 mm para plásticos y cerámicas, y hasta 0,2 mm para el titanio.

costos de impresion 3d

Reducir el porcentaje de relleno

Otra forma de ahorrar el costo de la impresión 3D es reducir el porcentaje de relleno utilizado cuando sea posible. No solo conservará más material de esta manera, sino que sus impresiones también terminarán mucho más rápido. Por supuesto, puede haber casos en los que se necesiten porcentajes más altos de relleno para satisfacer ciertas necesidades estructurales o mecánicas. Pero cuando no necesita crear un objeto sólido, reducir el porcentaje de relleno es una excelente manera de reducir el costo de la impresión 3D y, al mismo tiempo, acelerar el proceso general.

costos de impresion 3d

Reduzca el tamaño de su impresión para reducir costos de impresion 3d

 

En ocasiones cuando se imprime un modelo de algo en la vida real, es posible que el tamaño no sea de importancia funcional. En este caso, tendría sentido reducir el tamaño de su diseño. Sin embargo, al final del día, esta es una cuestión de preferencia personal y necesidades generales. Aún así, si puede hacer su modelo más pequeño, el proceso de impresión requerirá menos material, lo que resultará en costos mucho más bajos de impresión 3D.

Elija una mayor altura y resolución de capa

Todos los archivos 3D se cortan en capas y se pueden imprimir uno por uno para formar el objeto físico. La altura de estas capas determina la resolución del elemento impreso. Una altura de capa baja dará como resultado una superficie lisa, pero también aumentará drásticamente el tiempo que lleva imprimir su archivo 3D.  Si bien aumentar la altura de la capa dará como resultado un menor costo de la impresión 3D, debes considerar el impacto en la apariencia y la funcionalidad del objeto impreso. Especialmente si su pieza requiere bordes afilados para funcionar o tiene que encajar exactamente con otras piezas.


animacion 3d impresa

Impresión 3D en la animación Stop Motion

animacion 3d impresa

animacion 3d impresa. La impresión 3D ha avanzado campo en diferentes industrias, y la animación no se ha quedado atrás. La animación Stop Motion, conocida gracias a su creación fotograma por fotograma, se ha convertido en una gran oportunidad para los impresores y ha sido una gran herramienta para los animadores.

Anteriormente, se usaba la impresión 3D para la creación de utilería y herramientas en las producciones, pero gracias a su versatilidad, varias producciones están implementando la impresión 3D en sus personajes.

Esta “nueva” técnica fue adoptada por el famoso estudio de animación Laika.  Dentro de sus películas más destacadas que usan la impresión 3D se tienen a Coraline, Boxtrolls, y Kubo and The Two Strings.

“Al aprovechar el poder de las impresoras 3D, podemos crear emociones y actuaciones faciales sutiles nunca vistas en la animación stop-motion. Esta tecnología, combinada con los increíbles talentos de tantas disciplinas creativas diferentes dentro de LAIKA, es lo que nos permite contar historias realmente complejas y duraderas “. Brian McLean

La impresión 3D ha facilitado la animación Stop-Motion significativamente, ya que gracias a esta herramienta, se reducen costos  y tiempo de producción.

La impresión resulta ser más rápida para la creación de las piezas, que muchas veces son intercambiables para las gesticulaciones de los personajes, creando así una mejor visibilidad que en optaciones no puede ser logrado con los métodos tradicionales.


Impresión a doble extrusor

Impresión a doble extrusor

Impresión a doble extrusor

Impresión a doble extrusor. ¿Quisieras imprimir piezas con dos colores o tipos de filamento? ¡Las impresoras con doble extrusor son tu mejor aliado!, ya que cuentan con la opción de combinar distintos tipos de materiales y colores para imprimir piezas más complejas que son únicas y funcionales para ti.

Imprimir a doble extrusor

Imprimir a doble extrusor es sinónimo de ahorrar tiempo y energía, pues la impresión es mucho más ágil mientras combinas distintos tipos de materiales creando diversos objetos duales, sin parar tu impresora para cargar un material distinto, y lo mejor de todo, a una mayor velocidad de impresión.
Este tipo de piezas en la mayoría de los casos, se recomienda utilizar un filamento de soporte como material principal;

filamento-pla-red-dragon-1-75mm-filamento-filamento3d-plared-pla1.75mm-colorplus3d

PLA

Resistente, biodegradable, puede ser utilizado en la industria alimenticia, compatible con la gran mayoría de impresoras 3D, ideal tanto para principiantes como para impresores expertos.

filamento-abs-1-75mm-yellow-sunset-filamento3d-filaentosabs-filmentos3d-filamentosimpresora3d-colorplus-amarillo

ABS

Firme, alta resistencia de caídas, ideal para resistir temperaturas extremas.

HIPS

Soporte, firmeza de la pieza, resistente al calor y al impacto, ideal para usar con filamento ABS.

filamento-pva-3mm-1-2-kg-filamento-filamentopva-filamento3d-pva3mm

PVA

Soporte y resistencia de la pieza, flexibilidad, ideal para usar con filamento PLA.

filamento-3d-flexible-white-1-75-mm-1-kg-2-filamentotpu-filamento3d-filamentosimpresora3d-colorplus3d-mexico-filamentotpu

TPU

Aislante, flexible, ideal para piezas con mayor estiramiento o de uso constante.

Impresión a doble extrusor

En ColorPlus contamos con más de 14 colores para que puedas llevar a cabo piezas maravillosas y de la mejor calidad con este tipo de impresión dual, aquí te presentamos unos modelos de impresión y cómo puedes combinar tus filamentos para llevarlos a cabo

Robot

Te recomendamos usarlo con:

PLA Azul

Filamento pla Blue Whale 2.85mm

Glow in the dark

filamento-premium-glow-in-the-dark-green-1-75-mm-glowinthedark-brilloobscuridad-filamento3d-filamentopla-filamentosimpresora3d
Descarga aquí

Scrabble

Madera

Filamento Madera (Pla) 1.75mm

PLA Negro

filamento pla black panther
Descarga aquí

Caja

ABS Blanco

filamento-abs-1-75mm-white-artic-filamento3d-filaentosabs-filmentos3d-filamentosimpresora3d-colorplus-blanco

Metálico Bronce