fertilidad masculina

Impresión 3D prueba de fertilidad masculina

Usan impresión 3D para medir la fertilidad del masculina

fertilidad masculina

En los últimos años los problemas de infertilidad han aumentado por distintos factores, algunos de estos factores van desde temas con la alimentación, inmunología, genética, trastornos hormonales y más.

Por esto, un equipo de investigadores del Brigham and Women’s Hospital de la Universidad de Harvard y del Massachusetts General Hospital, en Boston (EE.UU.), desarrollaron en 2017 un dispositivo de bajo coste y fácil de usar que, conectado a un smartphone, puede evaluar muestras de semen para pruebas de fertilidad masculina en casa en menos de cinco segundos y con una gran precisión.

Para los autores esta innovación podría ser de gran utilidad para más de 45 millones de parejas en todo el mundo afectadas por problemas de fertilidad.

“Se estima que la infertilidad masculina desempeña un papel en aproximadamente el 40% de los casos, lo que subraya la necesidad de un análisis de semen más rutinario y fiable”

A demás, buscan que las pruebas de fertilidad masculinas fueran de una forma más sencillas y asequibles como lo son las pruebas de embarazo.

“Hasta ahora, los hombres tenían que proporcionar muestras de semen en habitaciones de clínicas, una situación en la que a menudo experimentan estrés y vergüenza. Además, las pruebas de laboratorio tardan tiempo y sus resultados son a menudo subjetivos”.

Cómo funciona

Gracias al uso de la impresión 3D para el prototipado y avances en electrónica de consumo y microfabricación se abarataron costos de producción y prueba. Para que funcione, se necesita de un microchip desechable con una punta capilar y un bulbo de goma, se utilizan para el manejo de muestras de semen. El equipo ha diseñado además una app que guía al usuario en cada paso y una escala de peso miniaturizada que se conecta de forma inalámbrica al móvil para medir el recuento total de espermatozoides.

Para evaluar el dispositivo, los científicos estudiaron 350 especímenes clínicos de semen del Massachusetts General Hospital Fertility Center. El sistema fue capaz de detectar muestras anormales de semen –basadas en las medidas de la Organización Mundial de la Salud sobre concentración y motilidad de espermatozoides– con una precisión del 98%.

Gracias a esta innovación iniciada en 2017, hoy se encuentran a la venta diferentes dispositivos para medir el esperma como es el caso de YO. Este producto sigue el mismo concepto y puede ser visto desde tu teléfono celular. Tiene un 97% de efectividad y está a la venta por $50 dolares.

Para usarlo, se requiere de una aplicación para tu teléfono y una muestra. Su uso es muy fácil y te da tus resultados en muy poco tiempo.

Recomendaciones para mejorar la fertilidad masculina

Puede que te preguntes, si mi producción de espermas es buena o regular ¿Qué puedo hacer para mejorarlo? ¿Qué factores afectan más? Estas son algunas recomendaciones básicas que podrían ayudarte a mejorar la calidad de tu esperma. Pero ten en cuenta que para tener una mejor evolución es necesario atenderte con un doctor.

Evita el alcohol y el tabaco

La nicotina y el exceso de alcohol influyen en la calidad seminal. La nicotina puede producir roturas en el ADN de los espermatozoides y afecta al material genético. Por otro lado, una tasa elevada de alcohol interfiere en la producción de testosterona, que es la principal hormona masculina en la producción de los espermatozoides.

Controla el estrés y la ansiedad

El estado emocional y psicológico influye directamente en la estructura de las células reproductivas. Concretamente, puede provocar estrés oxidativo, que disminuye la producción de oxígeno celular en el semen. Este hecho condiciona gravemente la calidad seminal y la posibilidad de fecundar.

No utilices ropa ajustada

Las prendas ajustadas ejercen presión sobre la piel y, en el caso de los testículos, aumenta la temperatura de la bolsa escrotal. Este hecho deteriora la calidad seminal y limita la producción de espermatozoides.

Ten precaución con algunos deportes

No existe ningún deporte convencional cuya práctica provoque infertilidad, pero algunas disciplinas deportivas pueden influir de manera negativa. Por ejemplo, deportes como el ciclismo ponen en riesgo la temperatura de los testículos. Los baños calientes, los hidromasajes o el uso de mantas térmicas afectan de la misma forma, pudiendo alterar la producción y calidad de los espermatozoides.

Mantén una dieta equilibrada

Tener un peso saludable es muy importante para una buena calidad seminal. Está demostrado científicamente que los hombres con obesidad producen 9 millones de espermatozoides por mililitro menos respecto a los hombres con un peso normal.

Ojo con los contaminantes

Uno de los principales factores externos que afectan a la capacidad reproductiva masculina es la contaminación ambiental. Además, algunos componentes químicos que se encuentran en los productos de limpieza o en los alimentos ultraprocesados producen reprogramación celular. Este hecho, repercute gravemente en el estado de los espermatozoides.

Descansa el tiempo necesario

La falta de sueño y de tiempo en el descanso actúa en los niveles de testosterona, que afecta a la cantidad de espermatozoides y su supervivencia. Un estudio de la Universidad de Boston reveló cómo la falta de sueño reduce en un 42% la probabilidad de fecundar respecto a hombres que duermen las horas recomendadas.


Impresión 3d joyeria

Resina para joyería

Impresión 3d joyeria

Impresión 3d joyeria

El sector de la joyería resulta en un arte. La creación de piezas de acabados únicos representa un trabajo arduo y complejo. Por eso, poco a poco los joyeros está implementando nuevas técnicas para mejorar sus procesos. Uno de ellos es el uso de la impresión 3D dentro de la joyería.

Para tener una mejor visión, se suelen crear prototipos de los diseños, pruebas y moldes para fundición con Resinas 3D. Esto acelera los procesos internos y mejora el producto, logrando acelerar la producción final.

Ventajas del uso de resina 3D para joyería

Personalización: con la ayuda de una impresora 3D podrás ofrecer a tu público objetos a medida, pensados exclusivamente para ellos, diseños exclusivos a un coste mínimo.

Simplicidad: las modificaciones en diseños se vuelven simples, y la creación de diferentes versiones es barata, rápida y sencilla.

Minimiza costes: al utilizar una impresora 3D reducimos costos en producción, a demás de realizar diseños complejos de forma rápida y económica.

Réplicas: reproduce piezas específicas de manera más fácil y simple a un menor precio.

Rapidez: acelera tus procesos de producción con la capacidad de imprimir por lotes.

Revestimiento, molde y fundido

Paso 1: Fija una caja de moldeo

Fija una caja de moldeo a la base de los bebederos. Si la caja tiene agujeros, envuélvela con cinta de embalaje transparente para contener el material de revestimiento.

Paso 2: Mezcla el revestimiento

Mezcla el revestimiento según las instrucciones del fabricante. Mézclalo a baja velocidad hasta que el polvo esté completamente húmedo.

Paso 3: Vierte el revestimiento

Vertido del revestimiento por el lado de la caja de moldeo, evitando el árbol del patrón. Realizar el vertido de forma fluida reduce la probabilidad de que queden atrapadas burbujas de aire. Usa una cámara de vacío para extraer las burbujas de la caja de moldeo. Permite que el revestimiento se endurezca y se seque.

Paso 4: Realiza la desgasificación

Desgasifica según las instrucciones del fabricante. Mantén el máximo vacío posible para evitar burbujas de aire en la fundición.

Impresión 3d joyeria

Paso 5: Deje que la caja se asiente durante 2-6 horas

Retira con delicadeza la base de goma de la caja y deja que repose en un entorno sin vibraciones durante 2–6 horas. Sigue las recomendaciones de seguridad del fabricante del revestimiento. Formlabs recomienda utilizar una máscara para el polvo o un respirador.

Fundición

Para el proceso de fundido de resina, se basa en revestir la o las piezas en un material refractario. Esto formará un molde de la pieza que permitirá fundir el metal para llenar la pieza. Gracias a que la resina se funde, el metal ocupara su lugar respetando los detalles en el revestimiento.

Joyas creadas con impresión 3D

 Anillos de  3Dwave Encode

La startup japonesa 3Dwave ha creado una línea de anillos y joyas impresas en 3D. Su colección creativa te permite enviar un archivo de audio de 3 segundos que convertirán en un precioso anillo fabricado con tecnologías 3D.  3Dwave ofrece estos anillos de metales estándar a metales preciosos como el oro y el platino.

Endswell y su joyería impresa en 3D

Rachel Gant y Andrew Deming, los diseñadores californianos detrás de Endswell Jewelry, empresa en la que se utiliza la impresión 3D para el desarrollo de originales anillos de oro macizo. Su trabajo se centra en piezas hermosas, pero con un diseño mínimo y sencillo, que ofrecen una alternativa a los anillos de bodas tradicionales.

Paola Valentini

La joyería impresa en 3D por la diseñadora italiana Paola Valentini. Su pulsera de oro rosa impresa en 3D de Valentini recibió el premio gracias a la utilización de técnicas de fabricación aditiva para crear las complejas estructuras de  la pieza de 64 gramos.

Skraep

Skraep es la empresa estadounidense responsable del lanzamiento de las originales joyas LuxMea, que convierten el papel arrugado en joyas impresas en 3D.  Lanzadas en 2015 a través de una campaña de Kickstarter, que a pesar de no alcanzar su meta, puso en alto el nombre del estudio de diseño responsable de piezas que van desde anillos, pulseras y collares todos relacionados con un diseño de papel arrugado, pero en metal.

Nervous System

Nervous System es un estudio de diseño estadounidense especializado en impresión 3D de complejos objetos. La técnica de la empresa es la utilización de modelos matemáticos para crear diseños de joyas, como pulseras y anillos. Además, Nervous System  también crea elementos de diseño para el hogar tales como jarrones, lámparas o esculturas. sus piezas van desde la impresión 3D hasta los materiales flexibles.

Zazzy

Zazzy es una startup holandesa que ofrece un catálogo de joyas para personalizar en línea. Una vez personalizado, puedes pedirlo y recibir la pieza impresa en 3D directamente en la puerta de tu hogar. La compañía ha ampliado los materiales que ofrece para incluir oro, acero y nylon.

Ciertamente el uso de la impresión 3D en los diferentes comercios e industrias a aportado muchos beneficios para los negocios y las reproducciones en masa. Ahora resulta más fácil conseguir piezas únicas e inimaginables.

Referencias para este blog



colmena 3d

Colmena impresa en 3D

Colmena 3D

Colmena 3D

Hablar de innovaciones con impresión 3D se ha convertido en un tema recurrente en este blog. En esta ocasión vamos a hablar de una invención directa para la apicultura. Se trata de Flow Hive Honey, un producto que permite recolectar la miel reduciendo el tiempo de trabajo del apicultor y que protege a las abejas.

Este proyecto fue creado por Cedar y Stuart Anderson. Cedar pensó que debía haber una manera más fácil de extraer miel directamente de la colmena que fuera menos estresante para las abejas. Fue así que junto con su padre Stuart idearon el concepto de Flow Hive.

Flow Hive es un marco de plástico que se encuentra dentro de una colmena convencional. Con un tirón de la palanca, la miel simplemente se drena en un frasco.

Todo inició en un cobertizo de Australia y actualmente han vendido 75,000 colmenas de flujo en uso en más de 130 países.

Aparte de pasar todo el fin de semana creando un desastre pegajoso en el cobertizo, no me gustaba aplastar abejas ni molestar a la colmena para cosechar, así que pensé que “tiene que haber una mejor manera”.

¿Entonces, cómo funciona?

Estas colmenas constan de 8 a 10 marcos estándar según el modelo. Esta estructurada para que exista una recolección limpia de miel. En el interior de los marcos, se encuentra una estructura impresa en 3d, similar a la de un panal preformado. Esta estructura se mueve con herramientas para que deje fluir la miel a través de un tubo.

Una vez que las celdas están llenas se puede retirar la miel con las herramientas.

Retire la tapa de la herramienta y la tapa del tubo

Inserte el tubo en el orificio
Inserte la herramienta en la ranura inferior
Girar la herramienta 90° hacia abajo

Los paneles se desplazan haciendo que la miel baje

La miel sale limpia, sin cera y sin lastimar a las abejas

¿Qué sucede con las abejas?

Una de las granes preguntas es qué sucede con las abejas en todo el proceso. Estas se mantienen dentro de los marcos, pero nada que preocuparse. Gracias a su estructura las abejas pueden mantenerse dentro sin ningún problema.

El diseño esta pensado en la protección de las abejas lo más seguro posible para ellas. A demás, sus productos son lo más sustentables posibles, desde la construcción de los panales hasta los productos de uso para su cuidado.

¿Qué pasa con el mundo y este nuevo producto?

Existen diferentes opiniones con respecto a este producto. Están las personas que apoyan esta invención como sus detractores, argumentando que afecta directamente el ecosistema y que las convierte en una granja más.

También existe el debate sobre la estructura. En 1940, el español Juan Bizcarro Garriga patentó un sistema muy similar. La diferencia, al parecer, radica en el material utilizado. El invento de Juan Bizcarro era de metal, mientras que para Flow Hive Honey se utiliza el plastico impreso.

A pesar de las controversias que existen en el publico, en especial entre apicultores, no se puede negar que es parte de una gran innovación. Si este producto interactua de forma amable con las abejas y reduce los tiempos de producción, puede ser considerado como un invento revolucionario para su área.

¡Qué esperas para obtener tu propia colmena!

Referencias para este blog



Collar anti covid

Collar Anti Covid creado por la NASA

Collar anti covid Creado por la NASA

Collar anti covid

El mundo se estremeció en 2020 con el anuncio de un nuevo virus proveniente de Wuhan, China que se esparció al rededor del mundo provocando una de las pandemias más grandes en la historia. Dos años después del descubrimiento del coronavirus, el mundo parece estar más cerca del fin de la pandemia.

Pero, ¿qué es lo que nos garantiza este 2022? ¿existe algún tipo de protección a demás de las vacunas? ¿que puedo hacer para evitar los contagios?

Algunas de estas preguntas se han tornado en retos para mejorar la estadía y prevenir los contagios, como en el caso de la NASA y el collar que ayuda a prevenir contagios por coronavirus.

A demás de las recomendaciones del sector salud (distancia social, el uso correcto de mascarillas y el lavado correcto de manos), una de las causas principales del contagio sigue siento el contacto directo con las vías respiratorias, siendo el primer contacto en la cara.

A pesar de que el uso de las mascarillas a ayudado a prevenir el contagio, el tocar constantemente la cara con nuestras manos afecta considerablemente. Se estima que una persona promedio se toca la cara al rededor de 23 veces por hora.

Gracias a este factor, un grupo de ingenieros de la NASA crearon un dispositivo que busca reducir el contacto. Este artefacto conocido como PULSE es un collar con un sensor que emite una vibración al detectar que la persona se lleva sus manos al rostro.

Este tipo de acciones, tics o hábitos pasan desapercibidos gracias a la frecuencia con la que se hacen. Es una rutina más de nuestro día a día. Con PULSE, se espera disminuir estas frecuencias y así disminuir en contagio, no solo del covid-19, sino de otras enfermedades respiratorias.

Qué es PULSE

Como acabamos de mencionar, PULSE es un collar inteligente creado con impresión 3D que posee un mecanismo de vibración para notificar al usuario cuando intenta llevar la mano al rostro.

Este dispositivo está equipado con un sensor de proximidad que, al estar colgado desde el cuello, detecta cuando la persona acerca la mano a su rostro. También esta construido con componentes de fácil acceso, permitiendo su creación en casa.

Cómo consegirlo

Los creadores de PULSE pusieron el proyecto de forma online como código abierto, de forma tal que cualquier persona con los conocimientos técnicos necesarios puede crear su propio collar tecnológico para evitar tocarse la cara. Puedes entrar al link para descargar los archivos y ver el proceso en inglés.

Nosotros compartimos el proceso en español.

Collar anti covid

Materiales para collar anti covid

Impresora 3D FDM con filamento 3D
Te recomendamos filamento PLA COLOR PLUS 
Soldador y soldadura
Pelacables
Soporte de manos auxiliares para ayudar a soldar (opcional)
Unidad de sensor IR
Transistor PNP: 2N3906 o equivalente
Resistencia estándar de 1 K Ohm
Interruptor deslizable
Motor vibratorio
W1 – 5 cm; W2 – 4 cm; W3 – 2 cm; W4 – 2 cm; Alambre calibre 22
Tubo termorretráctil para cubrir cables
Portapilas
Batería tipo botón CR2032 de 3 V
Pintura de color oscuro

Diagrama del Circuito

El elemento central del diseño del colgante PULSE es la unidad de sensor de infrarrojos (U1 en el diagrama) que proporciona una señal de salida alta (~3 V) al pin 3 de forma predeterminada. Y una señal de salida baja (~1 V) cuando el detector LED (D1) recibe una señal que indica que su mano (u otro objeto reflectante) está frente al colgante. L1 es el LED infrarrojo radiante. Cuando el pin 3 baja, alimenta el transistor PNP (Q1) para energizar el motor (M1) haciendo que vibre y el colgante emita pulsos. V1 es la batería de 3 V en la caja y S1 es el interruptor deslizante. El pin 4 del sensor de infrarrojos es una entrada de habilitación y no se utiliza.

1.- Conecte las soldaduras W1 a la clavija central del interruptor y las soldaduras W2 a una clavija del extremo del interruptor. El tercer pin del interruptor se puede cortar; no se usa. El termorretráctil cubre los pines.

2.- El otro extremo de W2 se suelda al pin emisor del transistor, así como al cable W3. (Esta es una conexión de tres vías: los cables W2, W3 y el pin del emisor del transistor están conectados entre sí; este es el voltaje positivo). El termorretráctil se utiliza para cubrir el conductor en el transistor.

3.- El otro extremo del cable W3 luego se conecta al pin 2 del sensor IR.

4.- Cable W4 (tierra), se conecta al pin 1 del sensor IR.

5.- La resistencia estándar de 1 K Ohm se conecta al pin medio o base del transistor. Use termorretráctil para cubrir la conexión.

6.- La resistencia estándar de 1 K Ohm se conecta al pin 3 del sensor IR.

7.- El cable rojo del motor vibratorio se suelda al pin colector del transistor. Use termorretráctil para cubrir la conexión

8.- El cable negro del motor vibratorio se suelda al puerto de tierra de la caja de la batería (junto con W4). El otro extremo de W1 se suelda al pin positivo del portapilas. Esta imagen muestra el ensamblaje completo y los cables plegados para insertarlos en la carcasa inferior.

9.- El motor y el interruptor encajan en la base de la caja.

10.- El sensor IR se desliza en los rieles de la base de la caja.

11.- Los componentes electrónicos se colocan suavemente en la base de la carcasa.

12.- Usando una pintura de color oscuro (es decir, acrílico, aceite, esmalte de uñas, etc.) como negro, azul marino, verde oscuro, etc., pinte ligeramente sobre el emisor como se muestra en la imagen a continuación. Usar un bolígrafo o marcador de color oscuro no funcionará igual que la pintura.

Con la electrónica en la base de la caja, se puede instalar la batería, se puede encender el interruptor; ¡Mueva su mano frente al sensor IR y el LED rojo en la placa del sensor se encenderá y la caja PULSARÁ!

Instale la carcasa superior. Adjunte un collar de su elección y PULSE está completo

Mientras persista la pandemia, vale la pena evitar las multitudes siempre que sea posible, usar mascarillas de buena calidad al salir de casa y priorizar las reuniones al aire libre, además de, por supuesto, recibir las dos o tres dosis de vacuna dentro de los plazos estipulados.

Collar anti covid

Referencias para este blog



impresion 3d y medicina

la impresion 3d y como ayuda a los tratamiento de cáncer de piel

Impresión 3D y Medicina para el Cáncer de Piel

impresion 3d y medicina

Optimizar el tratamiento del cáncer es uno de los objetivos principales en oncología. La impresión 3D es utilizada para tratar el cáncer de piel con tumores pequeños. Gracias a esta nueva implementación, se planea trabajar de forma más rápida, eficiente y económica en el tratamiento de cáncer de piel.

Por esto, un grupo de investigadores de Universidad Rovira i Virgili (URV), en Tarragona, del Instituto de Investigación Sanitaria Pere Virgili (IISPV) y del Hospital Sant Joan de Reus han ideado mediante una impresora 3D una máscara que protege la piel sana de la radiación que se aplica en los tratamientos para el cáncer de piel. Ellos ocuparon el material PLA para elaborar el dispositivo protector.

Mediante esta nueva técnica, basta con realizar un escáner de pocos segundos de duración en el área corporal afectada. Acto seguido se introducen los datos en la impresora 3D y se espera a que la máquina haga su trabajo, mientras el paciente realiza sus actividades cotidianas con total normalidad.

En concreto, los científicos se han centrado en la zona nasal porque es la más irregular, aunque los resultados son aplicables a cualquier otra parte del cuerpo. Con la ayuda del escáner y la impresora 3D, los médicos podrán disponer de una pieza personalizada que permitirá proteger la piel sana que rodea el tumor que debe recibir radiación.

Para tratar un cáncer de piel suelen utilizarse dos tipos de tratamiento alternativos: cirugía o radioterapia. Una de las técnicas radioterapéuticas más frecuentes es la braquioterapia, que consiste en colocar material radioactivo directamente sobre la piel. Sin embargo, este material no distingue células ‘buenas’ de células ‘malas’, por lo que resulta imprescindible proteger las zona sanas para que no resulte dañada.

Para administrar el tratamiento, se fabrica manualmente una máscara que, al mismo tiempo, permite proteger la piel que no debe recibir radiación. Previamente, se elabora un molde del rostro con alginato. (Elaborado a partir de algas pardas y tiene propiedades gelificantes).

Para ello, se coloca en la cara del paciente un plástico sobre el que se pone el alginato para que tome la forma de la zona. Pasadas 24 horas, este molde en negativo se seca y se utiliza para crear, mediante varias capas de cera, la máscara que llevará el enfermo durante la radiación. Este procedimiento que resulta “ciertamente muy incómodo”, a demás de ser “proceso largo y laborioso, que implica que el paciente tenga que ir más de una vez al hospital”.

El procedimiento para elaborar la nueva máscara es muy distinto, ya que es mecánico: se escanea la cara del paciente para digitalizar la forma del rostro y, con la ayuda de un programa informático especializado, se diseña la máscara, que se envía a una impresora 3D, que la termina en siete horas. Esta técnica innovadora proporciona una solución más cómoda para el paciente, que únicamente debe permanecer quieto unos segundos, mientras el escáner manual pasa por delante de su cara, sin que sea necesaria una actuación directa en la piel, como si tuviera que hacerse una radiografía.

Esta impresión resulta ser mucho más rápida y económica, ya que no necesita de un material previo para el hacer un molde. De igual forma, se obtiene un ahorro en material ya que se puede realizar la impresión de zonas en especifico para el tratamiento.  Además, de esta forma se obtienen resultados más precisos y sin tener a los pacientes por mucho tiempo.

Referencias para este blog



Halloween impresión 3d

stl de terror, que el terror se apodere de tu impresora

Halloween impresión 3d

Halloween impresión 3d

¡Halloween llego a ColorPlus! Esta festividad nos emociona tanto como a ti, por eso en este blog decidimos traerte diferentes ideas de impresión para tu fiesta de Halloween. Descubre diferentes decoraciones y disfraces para tener un evento del terror.

Halloween impresión 3d

DECORACIONES

ALIEN

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

CALAVERA

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CALDERO

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

CALDERO DE PULPO

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

CANDELABRO DE CALAVERAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CHARMANDER ESQUELETO

Te recomendamos imprimirlo con el filamento:

Termocromático blanco a azul

Link al archivo stl

CRANEO DE ZORRO

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CRANEO CON ESPADAS

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

Link al archivo stl

ESQUELETO MOVIBLE

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

ÁRBOL ENCANTADO

Te recomendamos imprimirlo con el filamento:

ABS BROWN EARTH

Link al archivo stl

HOMERO THE SHINNING

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

CRANEO DE BRUJAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

MANOS EN LA PARED

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

ABS SKIN

Link al archivo stl

MARIO BOO

Te recomendamos imprimirlo con el filamento:

pla white shark

Link al archivo stl

MANZANA ENVENENADA

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CALAVERA PORTA LÁPICES

Te recomendamos imprimirlo con el filamento:

METÁLICOS

Link al archivo stl

MANOS DE ESTANTE

Te recomendamos imprimirlo con el filamento:

ABS SKIN

Link al archivo stl

TAZÓN DE GATOS

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

METÁLICOS

Link al archivo stl

TROFEO DE TERROR

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

ZOMBIE

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

ABS SKIN

Link al archivo stl

Halloween impresión 3d

LÁMPARAS Y VELAS

CALABAZAS

Te recomendamos imprimirlo con el filamento:

ABS ORANGE AUTUM

Link al archivo stl

CALABAZA DEL GATO CHESHIRE

Te recomendamos imprimirlo con el filamento:

ABS ORANGE AUTUM

Link al archivo stl

CALAVERAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

PORTA VELAS DE CALAVERAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

NUBE DE EXPLOSIÓN ATÓMICA

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

VELAS

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CALDERO BURBUJEANTE

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

CALDERO LUMINOSO

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

Halloween impresión 3d

DISFRACES

ARETES DE BRUJA

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

BRAZALETE EXPANDIBLE

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

CASCO DE FLASH

Te recomendamos imprimirlo con el filamento:

METÁLICOS

Link al archivo stl

CORONA DE PRINCESA

Te recomendamos imprimirlo con el filamento:

ABS GOLD METAL

METÁLICOS

Link al archivo stl

CUERNOS DE MALÉFICA

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

SUJETADOR DE PELO DE ESQUELETO DE DRAGÓN

Te recomendamos imprimirlo con el filamento:

PLA White Shark

Link al archivo stl

SUJETADOR DE PELO DE CALAVERA

Te recomendamos imprimirlo con el filamento:

PLA White Shark

Link al archivo stl

Halloween impresión 3d

MÁSCARAS

MÁSCARA DEL JUEGO DEL CALAMAR

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

KITSUNE

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

UNICORNIO

Te recomendamos imprimirlo con el filamento:

ABS PURPLE ORCHID

Link al archivo stl

MECÁNICA

Te recomendamos imprimirlo con el filamento:

METÁLICOS

Link al archivo stl

ESQUELETO DE GATO

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

MÁSCARA COMPLETA

Te recomendamos imprimirlo con el filamento:

ABS WHITE ARTIC

Link al archivo stl

DEMONIO

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

ONI MASK

Te recomendamos imprimirlo con el filamento:

ABS BLACK COSMIC

Link al archivo stl

Halloween impresión 3d

CORTADORES DE GALLETAS

CHARRO CALAVERA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

CALABAZA MALVADA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

COVID-19

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

FANTASMITA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

JACK NAVIDEÑO

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

MOUNSTRO

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

MURCIELAGO

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

SCREAM

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

RIP

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

SOMBRERO DE BRUJA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

FANTASMA

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

ROLLO DE CALAVERAS

Te recomendamos imprimirlo con el filamento:

Filamento PLA

Link al archivo stl

discapacidad visual

Cómo la impresión 3D ayuda a la discapacidad visual

Cómo la impresión 3D ayuda a la discapacidad visual

discapacidad visual

Una nueva aplicación de la impresión 3D de la que tal vez no se ha hecho mucha difusión, pero que es igual de importante que se hable en esta sección de blogs, es la creación de maquetas especiales para personas menores de edad ciegas y débiles visuales realizadas por la Facultad de Arquitectura de la Benemérita Universidad Autónoma de Puebla (FABUAP).

Dicha universidad realizó un proyecto de accesibilidad e inclusión social en los ámbitos urbano y arquitectónico, partiendo del reconocimiento de la diversidad y el fomento de la participación ciudadana. Cuenta con dos propósitos: promover la accesibilidad al patrimonio urbano y arquitectónico del centro histórico de la ciudad de Puebla, México, entre niños con ceguera y debilidad visual y servir en la enseñanza de la movilidad autónoma de los menores.

El mapa en volumen de Puebla fue un proyecto de los doctores Adriana Hernández Sánchez y Christian Enrique de la Torre Sánchez, y los alumnos Luis Gerardo Córdova Moreno, Francisco Javier Vázquez y Jesús Manuel Mejía Sánchez, quienes a su vez integran el grupo Re Genera Espacio.

Se trata de una propuesta para dar acceso a niñas y niños con discapacidad visual al patrimonio cultural en entornos urbanos y arquitectónicos. Para ello fabricaron dos modelos hápticos (táctiles) impresos en 3D de una maqueta del Templo de San Antonio y un plano cartesiano de las 90 manzanas del Centro Histórico de la ciudad de Puebla.

“Son maquetas no convencionales. Nosotros adecuamos la realidad a texturas y volúmenes, ya que el elemento más importante es el dedo. Por lo tanto, los usuarios a través del tacto sienten los diferentes relieves y con ello se indica información relevante, como puntos de interés u obstáculos”.

Que pasa en México

Para este caso, el equipo de trabajo se basó en estadísticas brindadas por el Censo Nacional de Población y Vivienda del 2010 proporcionado por el INEGI. Según la encuesta, el 6.4% de la población mexicana (7.65 millones de personas) reportó tener al menos una discapacidad, siendo las principales la discapacidad motriz (56.1%), visual (32.7%) y auditiva (18.3%).

En el país, existen 2.5 millones de personas con alguna discapacidad visual, incluyendo la ceguera. Dentro de este grupo, el 63.5% no utiliza algún tipo de ayuda técnica, por lo que sus condiciones de autonomía y movilidad son limitadas, generando una condición de dependencia mayor. Solo el 12.2% utiliza el bastón guiador, 4.6% el sistema Braille, 1.6% una computadora de audio y el 18.1% recurre a otro elemento auxiliar de comunicación o desplazamiento.

El proceso

En 2018, el equipo realizó maquetas de papel de la traza urbana del primer cuadro del centro de la ciudad de Puebla para determinar las dimensiones a escala de las manzanas y calles, considerando que fueran distinguibles al tacto con los dedos de las manos.

Posteriormente, se realizaron las primeras impresiones en tecnología 3D, haciendo uso el software de modelado Rhinoceros. Se determinó un área máxima de impresión de 20 x 20 cm por placa, considerando las condiciones de las impresoras disponibles en Puebla. Esto, con la intención de que cada una representara cierto número de manzanas del centro histórico de la ciudad. En total, se imprimieron dieciocho placas ensamblables de prueba.

Era indispensable que los elementos de la maqueta se concibieran como de fácil lectura táctil y que, a través de la digitación, los niños pudieran identificar calles y avenidas, además de texturas y referencias de dimensiones en largo, ancho y espesor. Para la impresión de los modelos se adquirieron materiales de tres tonalidades diferentes y se realizaron pruebas con los niños de la Asociación Leyer’s de Puebla para conocer las diferencias de apreciación según diversos colores y texturas

Durante el ejercicio, a los niños menores de 8 años fue necesario tomarles de la mano para ayudarles a realizar el recorrido táctil por la maqueta, mientras que a los mayores solo fue necesario guiarlos con la voz.

La evaluación por parte de los niños fue positiva. De los ocho niños que participaron, seis con ceguera y dos con debilidad visual, seis lograron una comprensión del edificio, mientras que todos entendieron las áreas explicadas por el instructor. Siete consideraron que la escala era correcta, seis percibieron las texturas de la maqueta y siete coincidieron en que era importante conocer el lugar, lo cual muestra que la maqueta funcionó como incentivo para despertar la curiosidad sobre los edificios históricos en los menores.

En el caso de los dos menores con debilidad visual, se les pidió que tocarán y observarán algunos detalles arquitectónicos impresos a mayor escala (un fragmento de muro, un nicho y una espadaña) en diferentes colores: azul, naranja y amarillo-verde. Esto se hizo con la intención de preguntarles si distinguían mejor algún color que otro. Los niños aseguraron que el amarillo se distinguía mejor, mientras con el azul y el naranja se identificaban mejor las profundidades.

Este proyecto ganó un reconocimiento como una de las Buenas Prácticas de Accesibilidad en 2019 por la Design for All Foundation, con sede en Barcelona, España, en la categoría Proyectos, propuestas, metodologías y estudios.

Los Premios Golden Cubes se crearon para honrar a las personas y organizaciones que ayudan a la niñez y juventud a comprender la arquitectura. En esta edición y tras un proceso de selección nacional, 29 países presentaron 71 nominaciones a un jurado internacional en cuatro categorías: Instituciones, Escuelas, Medios escritos y Medios audiovisuales.

En la categoría Instituciones compitieron 27 trabajos, de estos la propuesta ganadora fue “Una ciudad en expansión” de Suecia; mientras “Maquetas táctiles para niños con ceguera y debilidad visual” de México y “Build” de Reino Unido obtuvieron menciones especiales.

Como se ve en el Mundo

A nivel internacional existen diversas iniciativas donde las maquetas impresas con tecnología 3D proponen un mejor acercamiento al espacio urbano y arquitectónico a personas con alguna discapacidad visual.

Dinamarca

En 2011, la Asociación Danesa de Ciegos planteó una idea de ladrillos con letras y números en sistema Braille que permitieran a niños con discapacidad visual la lectura a través del tacto. En 2019 la empresa LEGO refinó el concepto y empezó a probarlo en Reino Unido y Noruega por medio del proyecto “Braille Bricks”.

Argentina

La empresa IN Planos Hápticos elabora modelos urbanos y arquitectónicos con dimensiones máximas de 60 x 100 cm, utilizando materiales plásticos y diferenciando texturas y colores para representar extensiones considerables del territorio. Además, incorpora recorridos, contadores de pasos y simbología en sistema Braille, porque, como mencionan en su página de Facebook, busca la lectura para personas con discapacidad visual, pero también la accesibilidad para todos.

España

El museo Vilamuseu es uno de los principales referentes internacionales de accesibilidad en espacios culturales. Allí se pueden tocar muchas piezas originales, réplicas y maquetas impresas en 3D, hay elementos de accesibilidad aumentada e instrumentos donde es posible oler los aromas reales de objetos del pasado. Los textos están escritos en lengua de signos española y en audio descripción subtitulada para personas sordas y con discapacidad auditiva y visual en una guía multimedia fácil de usar, accesible y gratuita.

Italia

Otro referente importante a nivel internacional es el museo Tattile Statale Omero, considerado un modelo de excelencia en el escenario de oportunidades culturales para personas ciegas y débiles visuales que promueve exposiciones táctiles de importancia nacional e internacional. Al igual que el Vilamuseu, plantea que las maquetas táctiles deben ser lo más fieles posible a la realidad ya que la precisión de los detalles es muy importante en el momento de tocar los elementos de la obra artística.

Dentro de México existen varias discapacidades además de la visual que muchas veces no son tomadas en cuenta. Gracias a personas como el equipo de la BUAP y a la impresión 3D, se puede facilitar la vida de cientos de personas con alguna dificultad. Como hemos visto en blogs pasados, la impresión 3D nos da una esperanza para todas aquellas personas con algún tipo de limitación motriz o visual, así como crecer tecnológicamente por un mejor futuro.


Referencias para este Blog

Anderson, B. (09 de junio de 2021). Yo también. Obtenido de Yo también: https://www.yotambien.mx/actualidad/maquetas-en-3d-una-idea-poblana-con-premio-internacional/

El Universal Puebla. (03 de junio de 2021). El Universal Puebla. Obtenido de El Universal Puebla: https://www.eluniversalpuebla.com.mx/universidades/maquetas-buap-para-ciegos-ganan-premio-internacional-desing-all-foundation

Manatí MX. (07 de septiembre de 2020). Manatí MX. Obtenido de Manatí MX: https://manati.mx/2020/09/07/buap-maquetas-ninos-con-ceguera-o-debilidad-visual/

Sánchez, A. H., Sánchez, C. E., Sánchez, J. M., & Moreno, L. G. (s.f.). redalyc.org. Obtenido de redalyc.org: https://www.redalyc.org/journal/748/74862683004/html/


restauracion de imagenes religiosas

Restauración de imágenes religiosas con la impresión 3D

Restauracion de imagenes religiosas con la impresión 3D

restauracion de imagenes religiosas

Puede que por el título de este blog te cause algún tipo de intriga conocer cómo es que la impresión 3D ha llegado al ámbito religioso. Cuando hablamos de impresión 3D es muy difícil relacionar la religión en este ámbito, pero están más cerca de lo que piensas. La impresión 3D no es de un solo sector como lo hemos visto, y en este caso ha traído grandes beneficios en la parte de esculturas religiosas catolicas en los últimos años.

La impresión 3D permite reproducir varias piezas y hasta obras religiosas en distintos materiales. Esta tecnología trajo varias mejoras en restauraciones, ya que hace de manera más rápida y ligera su reproducción, además de económica.

Dado que las piezas fueron hechas hace mucho tiempo con técnicas manuales, con medidas especificas, puede resultar más tardado hacer de 0 un modelo 3D con un programa de modelado. Una gran opción que han usado diferentes empresas como Onevoxel es el uso de un escáner 3D.

Onevoxel es una empresa navarra especializada en la impresión de esculturas religiosas. Esta empresa ha digitalizado y replicado las imágenes de San Miguel de Aralar, la Virgen del Santo Cristo de Cataláin o la de Nuestra Señora de Lourdes en Tudela, entre otras.

Qué materiales son los que se ocupan

Las obras religiosas comúnmente son elaboradas con hormigón o un material ligero para que al ser expuestas puedan tener una mayor protección. Con la impresión 3D, se pueden crean piezas exactas que pueden recuperar detalles que se han perdido con el desgate del tiempo.

La idea principal es conseguir un material que pueda mantener los detalles, que sea resistente y ligero. Algunos optan por el uso del PLA, ya que es un material económico y resistente, además por gran adaptabilidad.

Proceso de creación

Escaneo

Lo primero que se hace es realizar la digitalización de la pieza por medio de un escáner 3D. Con el escáner se tiene una imagen más certera para pasar al siguiente paso.

Impresión

La siguiente parte es preparar el archivo para impresión 3D. Las esculturas religiosas tienen la ventaja que pueden ser escalables, o sea, que pueden aumentar o disminuir sus medidas de manera más fácil.

Lijado y pintura

Una vez impresa la pieza, pasa el momento de lijarla para que quede con un mejor acabado y sea más fácil pasar a pintar la pieza.

Virgen del Belén del Convento de San Clemente

Uno de los ejemplos de como la impresión 3D ha beneficiado a las esculturas religiosas es el caso de la Virgen del Belén del Convento de San Clemente en Sevilla, España.

La escultura de la Virgen apareció con uno de sus ojos roto, sin presentar signos de golpes o alguna causa externa para provocar la ruptura de este ojo.

Gracias a la impresión 3D fue más fácil y rápido poder restaurar la pieza sin necesidad de tener que abrir una vía de abordaje para colocar la nueva pieza.

Beneficios principales

-Realizar réplicas en cualquier tamaño (Ejemplo: Dirigidos a la Semana Santa infantil por ser más ligeros).

-Puede apoyar a disponer de una copia digital fiel al original, antes de que se rompa o deteriore la escultura por cualquier motivo inesperado (Acción humana, paso del tiempo, etc.).

-Mantiene la preservación de la pieza original, ya que las piezas manipuladas serían las impresas en 3D, por lo cual la original se puede conservar mejor.

-Facilita la reproducción de piezas con geometría orgánica, como esculturas o imágenes religiosas.

-Adaptación de obras para personas con limitaciones sensoriales.

-Uso de las piezas para más exhibiciones y eventos de índole religiosa como Semana Santa.

Suena alucinante cómo la impresión 3D llega a sectores tan poco comunes, pero que a su vez traen mayores beneficios. La religión y sus obras forman parte de un precedente histórico, por ello el poder restaurarlo y preservarlo se ha convertido en una tarea importante, también se ha encontrado en la impresion 3D cómo mejorar las condiciones de algunos eventos litúrgicos a partir de la réplica de piezas únicas.

Si tu también estas interesado en imprimir algunas piezas religiosas puedes entrar a este link https://cults3d.com/es/etiquetas/religioso para obtener tus archivos e iniciar hoy mismo.

restauracion de imagenes religiosas

Referencias usadas para este blog


Catalán, C. (17 de febrero de 2020). NavarraCapital. Recuperado el octubre de 2021, de NavarraCapital: https://navarracapital.es/la-impresion-3d-sube-a-los-altares/

SICNOVA. (3 de junio de 2020). SICNOVA. Recuperado el octubre de 2021, de SICNOVA: https://sicnova3d.com/blog/casos-de-exito/restauracion-de-una-talla-religiosa-con-tecnologia-3d-virgen-del-belen-del-convento-de-san-clemente-sevilla/

todo 3d. (s.f.). todo 3d. Recuperado el octubre de 2021, de todo 3d: https://todo-3d.com/hermandades/?v=911e8753d716


bioimpresión 3d

Bioimpresión 3D

Bioimpresión 3D

La bioimpresión celular 3D es una tecnología de vanguardia que usa la tecnología de fabricación aditiva de la impresión 3D. Gracias a ese conjunto, se pueden crear tejidos vivos como vasos sanguíneos, huesos, cartílagos o piel mediante la adición capa a capa de un material sin la necesidad de molde.

El material que se utiliza no son filamentos o resinas, sino un componente denominado como BIOTINTA o Biomateriales. Estas Biotintas, elaboradas con células vivas, un material estructural y factores de crecimiento combinadas con hidrogeles. Son cargados en los inyectores de la bioimpresora y  permite mimetizar la arquitectura del tejido celular de interés.

Los principales componentes son: las células vivas representativas del tejido a imprimir; los biomateriales para la generación de la estructuras o andamiajes, entre otros colágeno, gelatina ó hidrogeles a base de ácido hialurónico o polietilenglicol, componentes para el mantenimiento celular, así como otros compuestos ó moléculas que permita la solidificación ó con capacidad de reticular.

Metales


Presentan alta resistencia mecánica, similar a la del hueso, desarrollándose sobre todo para regeneración de tejido óseo. Se han usado aleaciones cromo-cobalto, titanio, nitinol y aceros inoxidables.

Cerámicos


Han sido utilizados para la impresión 3D de andamios gracias a su gran resistencia a la compresión y biocompatibilidad; siendo también capaces de generar andamios para regeneración ósea. Se han estudiado andamios impresos con hidroxiapatita (naturalmente presente en el hueso) e hidroxiapatita más trifosfato de calcio para regenerar hueso.

Polímeros


Varios polímeros sintéticos, naturales e híbridos se usan para fabricar andamios biomédicos 3D porosos, incluyendo poli(etilenglicol) diacrilato y metacrilato de gelatina natural, empleados para fabricar hidrogeles. Los hidrogeles poseen propiedades mecánicas ajustables, son biocompatibles y tienen la capacidad mantener su estructura 3D al ser hidratados.

Algunas técnicas de bioimpresión son:

Por extrusión


Se produce mediante la extrusión de biomateriales para la creación de patrones 3D y construcción de células. Esta técnica presenta ventajas como el control de la temperatura.

Asistida por láser


Se basa en la utilización de un láser para colocar biomateriales sobre un material específico. Alguna de las ventajas que tiene esta impresión es la precisión y la falta de contacto, lo que resulta de vital importancia para no contaminar el resultado.

Por ondas acústicas


 Esta técnica puede ser utilizada para el manejo celular, con ventajas como la precisión no intrusiva.

SWIFT


Permite la posibilidad de imprimir vasos sanguíneos para el soporte de órganos que han sido construidos con células OBB, o en su defecto con alto porcentaje de estas. Algunas de las ventajas de esta técnica es la ampliación del tiempo de vida celular.

Qué se ha logrado

El primer ovario funcional

En 2016, un equipo de científicos de la Universidad de Northwestern anunció que logró imprimir en 3D e implementar el primer ovario funcional en un ratón. Gracias a la bioimpresión, se pudo crear una estructura similar a un ovario con la capacidad para formar ovocitos, o células reproductivas femeninas.

Para su creación utilizaron un material biológico derivado del colágeno, lo cual permite que el ovario cuente con vasos sanguíneo y finalmente sea capaz de desarrollar la ovulación.

Para probar su desarrollo las prótesis de ovarios impresas fueron implantados en ratones a los cuales se les había retirado un ovario anteriormente. Después del procedimiento, los ratones recuperaron la ovulación normal e incluso podrían dar a luz a crías.

Los resultados del proyecto ofrecen una forma para el tratamiento para la infertilidad femenina, está dirigido principalmente a las niñas que han atravesado cáncer infantil y por los tratamientos de quimioterapia han perdido alguna capacidad en su sistema reproductor.

Aplicaciones en Farmacéutica y Alimentos

Además de la medicina, otra área beneficiada ha sido la farmacéutica, ya que gracias a la bioimpresión se han estudiando mecanismos de acción de determinadas patologías para identificar nuevos posibles fármacos. Dentro del sector dermocosmético, la bioimpresión es utilizada para crear piel y estudiar el efecto de determinados compuestos o fórmulas.

Otro sector de aplicación es el alimentario, bien para el desarrollo de ingredientes y productos con efecto funcional, ya que esta tecnología permite crear modelos in vitro más precisos de aquellas funciones fisiológicas de interés, así como para la fabricación de carne in vitro, una de las alternativas tecnológicas más relevantes para el abastecimiento sostenible de proteínas. La bioimpresión 3D permite crear los andamiajes sobre los que se deposita la células de tejido muscular para su posterior cultivo en biorreactor, apunta Lidia Tomás.

La Bioimpresión 3D en México

Aunque la mayoría de los avances e implementaciones han sido en Estados Unidos y Europa, la bioimpresión 3D ha tocado Latinoamérica, y uno de los países donde se tiene un mayor avance es México. Dentro del laboratorio del Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez,  En el área de la ingeniería biomédica intenta imprimir tejidos, e incluso órganos, para hacer frente a diversas patologías. Fundamentalmente, aquellas en las cuales se necesite regenerar tejidos o demanden un trasplante.

La intención de obtener el equipo fue para regenerar tejido cardíaco y cartílago artificial en un término de tres años”

Según un estudio realizado en International Journal of Bioprinting en 2019, México ocupa el segundo lugar en Latinoamérica en cuanto a número de artículos publicados en el área. En ese sentido sigue a Brasil, y contribuye al desarrollo en una región cuyo aporte en el escenario global es aún modesto. Menos del 3% de los trabajos publicados provienen de América Latina y ningún país latinoamericano ha registrado todavía alguna patente.

El Rol de Latinoamérica para el avance dentro de la biomedicina y la bioimpresión 3D cada vez tiene un panorama más amplio. Latinoamérica cuenta con investigadores entrenados en el desarrollo de cultivos celulares y una creciente disponibilidad de la citada tecnología en los laboratorios. Si a eso se le suma financiación pública o privada para proyectos de investigación, el panorama puede ser alentador. Algunos especialistas coinciden que los próximos 5 años serán vitales y México parece haber tomado nota de ello.

Bioimpresión de tumores

Otro de los tópicos de investigación de este equipo tiene que ver con recrear in vitro lo que ocurre en un tejido tumoral. Un tumor maligno es una compleja estructura tridimensional que establece interacciones con tejidos que lo rodean.

En ciertos cánceres dar con un conocimiento más profundo acerca de la fisiopatología o con tratamientos más efectivos ha sido particularmente desafiante. Los expertos creen que se debe en parte a que los sistemas de abordaje 2D tradicionales no permiten reflejar la complejidad de una neoplasia. Algo que en el laboratorio podría lograrse gracias a la bioimpresión 3D de tejidos tumorales a partir de células cancerosas y la incorporación posterior de esa estructura en un dispositivo microfluido similar a un chip. Esta herramienta, conocida como “tumor en un chip”, existe y es motivo de investigación en diversas partes del mundo. Brinda una visión más dinámica de la patología neoplásica y permite proyectar mejores diagnósticos y tratamientos para los pacientes.

La bioimpresión 3D cada vez va teniendo más fuerza, principalmente por la alta demanda que se ha tenido en los últimos años por la falta de donadores de órganos. Gracias a los avances, al día de hoy podemos experimentar y realizar investigaciones con el fin de crear de varios de estos órganos, encontrar la cura a diversas enfermedades y descubrir nuevas formas de alimentarnos o de testear productos dermatológicos. Con ello, vemos poco a poco cómo se va ampliando un nuevo panorama y se tiene una gran expectativa con la impresión 3D en este sector.

VER TIENDA 

Referencias usadas para este blog


ADRAGNA, C. (s.f.). Impresión 3D y caracterización de andamios de. Recuperado el septiembre de 2021, de Impresión 3D y caracterización de andamios de: https://rdu.unc.edu.ar/bitstream/handle/11086/6522/Proyecto%20Integrador%20Adragna-Jurczyszyn.pdf?sequence=1&isAllowed=y

AECOC. (s.f.). AECOC. Recuperado el Septiembre de 2021, de AECOC: https://www.aecoc.es/innovation-hub-noticias/que-es-la-bioimpresion-y-que-utilidad-tiene/

Bernardo, A. (20 de junio de 2017). hipertextual. Recuperado el septiembre de 2021, de hipertextual: https://hipertextual.com/2017/06/impresion-3d-tejidos-humanos

C, L. (07 de noviembre de 2019). 3D Natives. Recuperado el septiembre de 2021, de 3D Natives: https://www.3dnatives.com/es/bioimpresion-futuro-medicina-180520172/#!

C., L. (07 de abril de 2016). 3D Natives. Recuperado el Septiembre de 2021, de 3D Natives: https://www.3dnatives.com/es/la-bioimpresion-crea-ovario-07042016/#

Fuentes, F. (Febrero de 2021). OCEANO medicina. Recuperado el Septiembre de 2021, de OCEANO Medicina: avanza

IDONIAL. (s.f.). IDONIAL. Recuperado el septiembre de 2021, de IDONIAL: https://www.idonial.com/es/conocimientos-clave/biofabricacion

international journal of bioprinting. (30 de septiembre de 2019). international journal of bioprinting. Recuperado el septiembre de 2021, de international journal of bioprinting: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310266/

Lavallén, H. (11 de abril de 2021). Conclusión. Recuperado el septiembre de 2021, de Conclusión: https://www.conclusion.com.ar/info-general/imprimiendo-vida-la-bioimpresion-3d/04/2021/

Rodríguez, G. (08 de julio de 2021). Life Sciences Lab. Recuperado el septiembre de 2021, de Life Sciences Lab: https://lifescienceslab.com/noticia/gracias-a-la-bioimpresion-3d-es-posible-crear-tejidos-mediante-mecanismos-de-impresion


protesis 3d

Ayúdame 3D prótesis para personas

Protesis 3d

Protesis 3d

Ayúdame3D es una entidad española que fomenta el valor social de la tecnología a través de programas de concienciación tecnológico-social con el fin de ayudar a colectivos vulnerables de todo el mundo.

Gracias a ello crea y entrega brazos impresos en 3D, denominados trésdesis, de manera gratuita a personas con discapacidad. Reduciendo así la desigualdad a la que se enfrentan, mejorando su calidad de vida y proporcionando mejores oportunidades de empleabilidad y escolarización.

Este proyecto nace en 2017 a través de Guillermo Martínez, que a la edad de 22 años diseñó la primera prótesis para personas que no tienen codo impresa en 3D desde su habitación. Actualmente maneja su propia organización que fabrica y reparte estas piezas gratuitamente en más de 55 países.

Todo empezó con un viaje a Kenia

En una entrevista dada a EL País habla de cómo fue que inició todo este proyecto. Cuenta que al terminar la carrera se sentía desbordado. “El último curso fue difícil e intenso. Necesitaba desconectar”. Gracias a Edurne, una amiga de su hermana que un año previo estaba en un orfanato en Bamba, Kenia, nació la primera imagen de este gran proyecto. “Enseñaba a los niños inglés, que allí es muy importante, y me pareció un buen plan”.

En primera instancia quería llevar juguetes impresos, pero a su vez Guillermo quería hacer algo con lo que pudiera ayudar realmente. Buscando en internet encontró plantillas para imprimir en 3D dispositivos para niños sin dedos. “Pregunté en el orfanato si alguien precisaba algo similar”. Le dijeron que no, pero que en el pueblo había cinco personas que les faltaba un brazo. Así que le mandaron las necesidades y medidas de cada caso y, durante los tres meses previos al viaje, Martínez pasó horas encerrado en su cuarto diseñando, imprimiendo, probando, deshaciendo y rehaciendo prótesis. Hasta que creó un prototipo capaz de abrir y cerrar los dedos con un ligero movimiento de hombro, codo o muñeca, según el modelo, llamados Vicky, Mery y Nelly.

Pero… ¿qué son las Trésdesis?

Las trésdesis son brazos impresos en 3D con movilidad prensil gracias a la articulación que tenga cada persona (muñeca, codo, hombro). Dichos modelos están basados en los modelos originales de Enabling The Future, incorporando desde ONG AYÚDAME 3D un nuevo modelo para personas sin codo.


Mano para personas con muñeca. Puede abrir y cerrar los dedos gracias al movimiento de la muñeca.



Brazo para personas con codo. Puede abrir y cerrar los dedos gracias al movimiento del codo.



Brazo para personas sin codo. Puede abrir y cerrar los dedos gracias al movimiento del hombro. Innovación de Ayúdame3D.


“Nuestras trésdesis están fabricadas por nuestra plataforma de expertos/as en impresión 3D con un material llamado PLA, un plástico proveniente de recursos vegetales como el almidón de maíz”

El mecanismo de todos los tipos es similar: con el movimiento de articulación natural de la persona se activa un mecanismo de hilos de nylon que hace que los dedos cierren con fuerza y al deshacer este movimiento unas gomas devuelven los dedos a su posición inicial.

“Buscaba algo muy sencillo, sin electrónica, porque, al ser para un lugar sin recursos tecnológicos, debía ser una pieza fácil y barata de reparar”.

Después de 5 años

Ya han pasado 5 años desde que este proyecto vio sus primeras luces, y además de las trésdesis realizan diferentes aplicaciones que sean posibles gracias a la impresión 3D. En este tiempo, han podido crear diferentes ayudas para diferentes sectores, como lo son las cajas Chemobox porta sueros, máscaras protectoras para la contingencia sanitaria contra el Coronavirus, dispensadores de pastillas para personas con Parkinson

protesis 3d

CHEMOBOX

Iniciativa nacida en 2018 cuando @bdmaisori pidió por Twitter una caja de batman para su hijo Iván que estaba en el hospital. Desde Ayúdame3D como otros twitteros nos pusimos a imprimir sin pensarlo.

Tras ello no hemos dejado de imprimir para cualquier familia que la necesite.

protesis 3d

PASTILLEROS PARA PERSONAS CON PARKINSON

Gracias a la idea de @brianalldridge podemos desarrollar un pastillero que permite sacar una sola pastilla para evitar que se desparramen todas y así mejorar el día a día de muchas personas que sufren esta situación.

Caretas sanitarias

Más de 20.000 personas fueron ayudadas con dispositivos de protección contra el virus y los entregamos en más de 400 centros de toda España.

Un aspecto a resaltar sobre Ayúdame3D es que no venden las prótesis sino que las regalan. “Las personas pueden ponerse en contacto con nosotros de forma directa, o pueden hacerlo a través de las entidades sociales que nos ayudan y nos facilitan la información de las personas que las necesitan”. Las personas que estén interesadas en solicitar una trésdesis pueden ingresar a la página web de esta organización, únicamente tienen que llenar un formulario por medio de Google, donde deben enviarse fotografías y vídeo de la mano o brazo que hay que realizar para la persona beneficiaria, y esperar a que la organización se ponga en contacto a través de correo electrónico para informarle de los avances en ese proyecto.

Pero… entonces ¿Cómo se mantiene a flote este proyecto?

En entrevista con Iberdrola, Guillermo comenta: ¨Hay mucha gente, muchas empresas y muchas entidades sociales que colaboran a través, por ejemplo, de sus programas de Responsabilidad Social Corporativa (RSC) y la verdad es que ese es el empuje que necesitamos para poder seguir con el proyecto. Gracias a este esfuerzo estamos consiguiendo llegar a más de 150 personas anualmente y estamos presentes en 34 países.”

Ayúdame3D es una entidad híbrida en parte ONG y parte modelo B2B (“Businees to business”) con programas de concienciación social para colegios y empresas. En los colegios hacen formación para profesores en técnicas de impresión 3D y con las empresas hacen team building presenciales o virtuales y merchandinsing para eventos puntuales, y todos los beneficios van destinados a seguir creando prótesis para personas. Por lo que continuamente están formando alianzas sociales en las que intentan capacitar a personas en diferentes países para tomar medidas, recibir dispositivos y mantener seguimiento a largo plazo, varios de estos dispositivos han sido entregados a niños y niñas, y han hecho que éstos sean funcionales de acuerdo a su crecimiento.

Además han creado aulas internacionales en diseño e impresión 3D en todo el mundo. “No solo ayudamos sino que enseñamos a ayudar. Creamos aulas tecnológicas en diferentes países formando a estudiantes de la zona en diseño e impresión 3D para, además de entregar nuestras trésdesis de manera directa, para que aumenten sus conocimientos y consigan mejores oportunidades laborales.”

Así que ya lo sabes, si te interesa recibir una prótesis, conoces a alguien que la necesite, o si te interesa colaborar en alguno de los tantos proyectos de Ayúdame3D, ponte en contacto con ellos y descubre cómo la impresión 3D ayuda a mejorar vidas.


Puedes ayudar a esta organización a través de los siguientes links


Referencias para este blog:

Ayudame 3D. (s.f.). Ayudame 3D. Recuperado el Septiembre de 2021, de Ayudame 3D: https://ayudame3d.org/somos/

IBERDROLA. (s.f.). IBERDROLA. Recuperado el Septiembre de 2021, de IBERDROLA: https://www.iberdrola.com/compromiso-social/entrevista-guillermo-martinez-ayudame3d

Jerez, A. C. (27 de julio de 2021). ABC Economía. Recuperado el Septiembre de 2021, de ABC Economía: https://www.abc.es/economia/abci-impresion-articula-emprendimiento-proposito-202107270123_noticia.html?fbclid=IwAR2tZAUvfqp64m-gPx-Znty-W1AW6iv-NbTRTQvoG0s6kQ374MuYhe_wKZA#vca=rrss-inducido&vmc=abc-es&vso=tw&vli=noticia.foto&ref=https://www.abc.es/